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Abstract. It is well-known that the classical univariate orthogonal poly-
nomials give rise to highly efficient Gaussian quadrature rules. We show
how these classical families of polynomials can be generalized to a mul-
tivariate setting and how this generalization leads to truly Gaussian cu-
bature rules for specific families of multivariate polynomials.
The multivariate homogeneous orthogonal functions that we discuss here
satisfy a unique slice projection property: they project to univariate or-
thogonal polynomials on every one-dimensional subspace spanned by a
vector from the unit hypersphere. We therefore call them spherical or-
thogonal polynomials.

1 Spherical orthogonal polynomials

The orthogonal polynomials under discussion were first introduced in [1] in a
different form and later in [3] in the current form. Originally they were not termed
spherical orthogonal polynomials because of a lack of insight into the mechanism
behind the definition. In this paper we give several examples of these families of
spherical orthogonal polynomials, present graphical illustrations of the bivariate
case, compare them to radial orthogonal polynomials which are a special case of
radial basis functions, and discuss some Gaussian cubature formulas which can
be derived from the spherical orthogonal polynomials.

In dealing with multivariate polynomials and functions we shall often switch
between the cartesian and the spherical coordinate system. The cartesian co-
ordinates X = (x1, . . . , xn) ∈ R

n are then replaced by X = (x1, . . . , xn) =
(ξ1z, . . . , ξnz) with ξk, z ∈ R where the directional vector ξ = (ξ1, . . . , ξn) be-
longs to the unit sphere Sn = {ξ : ||ξ||p = 1}. Here || · ||p denotes one of the usual
Minkowski norms. While ξ contains the directional information of X , the vari-
able z contains the (possibly signed) distance information. With the multi-index
κ = (κ1, . . . , κn) ∈ N

n the notations Xκ, κ! and |κ| respectively denote

Xκ = xκ1

1 . . . xκn

n

κ! = κ1! . . . κn!

|κ| = κ1 + . . . + κn
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Since z can be positive as well as negative and hence two directional vectors can
generate X , we also introduce a signed distance function

sd(X) = sgn(x1)||X ||p

For the sequel of the discussion we need some more notation. We denote by
R[z] the linear space of polynomials in the variable z with real coefficients, by
R[ξ] = R[ξ1, . . . , ξn] the linear space of n-variate polynomials in ξk with real
coefficients, by R(ξ) = R(ξ1, . . . , ξn) the commutative field of rational functions
in ξk and with real coefficients, by R(ξ)[z] the linear space of polynomials in
the variable z with coefficients from R(ξ) and by R[ξ][z] the linear space of
polynomials in the variable z with coefficients from R[ξ].

Let us introduce the linear functional Γ acting on the variable z, as

Γ (zi) = ci(ξ)

where ci(ξ) is a homogeneous expression of degree i in the ξk:

ci(ξ) =
X

|κ|=i

cκξκ (1)

For our purpose

cκ =
|κ|!
κ!

Z

. . .

Z

||X||p≤1

w (||X ||p)Xκ dX (2)

where dX = dx1 . . . dxn and hence

Γ (zi) =

Z

. . .

Z

||X||p≤1

w (||X ||p)
 

n
X

k=1

xkξk

! i

dX

The n-variate polynomials under investigation are of the form

Vm(X) = Vm(z) =

m
X

i=0

Bm2−i(ξ)z
i (3a)

Bm2−i(ξ) =
X

|κ|=m2−i

bκξκ (3b)

The function Vm(X) is a polynomial of degree m in z with polynomial coef-
ficients from R[ξ]. The coefficients Bm(m−1)(ξ), . . . , Bm2(ξ) are homogeneous
polynomials in the parameters ξk. The function Vm(X) does itself not belong
to R[X ] but since Vm(X) = Vm(z), it belongs to R[ξ][z]. Therefore the function
Vm(X) is given the name spherical polynomial: with every ξ ∈ Sn the function
Vm(X) = Vm(z) is associated which is a polynomial of degree m in the variable
z = sd(X).

Imposing the orthogonality conditions

Γ (ziVm(z)) = 0 i = 0, . . . , m − 1 (4)
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signifies that Vm(z) satisfies

Γ (ziVm(z)) =
m
X

j=0

Bm2−j(ξ)Γ (zi+j) i = 0, . . . , m − 1

=

Z

. . .

Z

||X||p≤1

m
X

j=0

Bm2−j(ξ)w(||X ||p)

 

n
X

k=1

xkξk

! i+j

dX

=

Z

. . .

Z

||X||p≤1

w(||X ||p)
 

n
X

k=1

xkξk

! i

Vm

 

n
X

k=1

xkξk

!

dX = 0

As in the univariate case the orthogonality conditions (4) only determine Vm(z)
up to a kind of normalization: m + 1 polynomial coefficients Bm2−i(ξ) must be
determined from the m parameterized conditions (4). How this is done, is shown
now. For more information on this issue we refer to [3, 5].

With the ci(ξ) we define the polynomial Hankel determinants

Hm(ξ) =

þ

þ

þ

þ

þ

þ

þ

þ

þ

þ

c0(ξ) · · · cm−1(ξ)
... . .

.
cm(ξ)

...
cm−1(ξ) · · · c2m−2(ξ)

þ

þ

þ

þ

þ

þ

þ

þ

þ

þ

H0(ξ) = 1

We call the functional Γ definite if

Hm(ξ) 6≡ 0 m ≥ 0

In the sequel of the text we assume that Vm(z) satisfies (4) and that Γ is a
definite functional. Also we shall assume that Vm(z) as given by (3) is primitive,
meaning that its polynomial coefficients Bm2−i(ξ) are relatively prime. This last
condition can always be satisfied, because for a definite functional Γ a solution
of (4) is given by [3]

Vm(z) =
1

pm(ξ)

þ

þ

þ

þ

þ

þ

þ

þ

þ

c0(ξ) · · · cm−1(ξ) cm(ξ)
... . .

. ...
cm−1(ξ) · · · c2m−1(ξ)

1 z · · · zm

þ

þ

þ

þ

þ

þ

þ

þ

þ

V0(z) = 1 (5)

where the polynomial pm(ξ) is a polynomial greatest common divisor of the
polynomial coefficients of the powers of z in this determinant expression.

In the sequel we use both the notation Vm(X) and Vm(z) interchangeably to
refer to (3). In [3] the following 3-term recurrence relation was proved for the
spherical orthogonal polynomials Vm(X) = Vm(z).

Theorem 1. Let the functional Γ be definite and let the polynomials Vm(z) and

pm(ξ) be defined as in (4) and (5). Then the polynomial sequence {Vm(z)}m
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obeys the recurrence relation

Vm+1(X) = αm+1(ξ) ((z − βm+1(ξ))Vm(X) − γm+1(ξ)Vm−1(X))

V−1(X) = 0 V0(X) = 1

with

αm+1(ξ) =
pm(ξ)

pm+1(ξ)

Hm+1(ξ)

Hm(ξ)
βm+1(ξ) =

Γ
Ä

z [Vm(X)]2
ä

Γ
Ä

[Vm(X)]
2
ä

γm+1(ξ) =
pm−1(ξ)

pm(ξ)

Hm+1(ξ)

Hm(ξ)
γ1(ξ) = c0(ξ)

2 Spherical Legendre and Tchebyshev polynomials

Let us first consider w(||X ||p) = 1 and construct so-called spherical Legendre
polynomials Lm(X). For the purpose of some graphical illustrations we switch
to the bivariate case. For the ℓ2-norm the expressions ci(ξ) equal zero for odd i
and are given by the following expressions for even i:

c0(ξ) = π c2(ξ) =
π

4
(ξ2

1 + ξ2
2) c4(ξ) =

π

8
(ξ2

1 + ξ2
2)2

c6(ξ) =
5π

64
(ξ2

1 + ξ2
2)3 c8(ξ) =

7π

128
(ξ2

1 + ξ2
2)4 . . .

Using the signed distance function sd(x, y), the first few orthogonal polynomials
satisfying (4), can be written as :

L0(z) = 1

L1(z) = z

= sd(x, y)

L2(z) = z2 − 1
4

�

ξ2
1 + ξ2

2

Ð

(6)

=
�

sd(x, y) − 1
2

Ð�

sd(x, y) + 1
2

Ð

L3(z) = z3 − 1
2

�

ξ2
1 + ξ2

2

Ð

z

= sd(x, y)
Ä

sd(x, y) − 1√
2

ä Ä

sd(x, y) + 1√
2

ä

L4(z) = z4 − 3
4

�

ξ2
1 + ξ2

2

Ð

z2 + 1
16

�

ξ2
1 + ξ2

2

Ð2

=

Å

sd(x, y) −
√

3−
√

5

2
√

2

ãÅ

sd(x, y) +

√
3−

√
5

2
√

2

ã

Å

sd(x, y) −
√

3+
√

5

2
√

2

ãÅ

sd(x, y) +

√
3+

√
5

2
√

2

ã
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L5(z) = z5 −
�

ξ2
1 + ξ2

2

Ð

z3 + 3
16

�

ξ2
1 + ξ2

2

Ð2
z

= sd(x, y)
�

sd(x, y) − 1
2

Ð�

sd(x, y) + 1
2

Ð

Ä

sd(x, y) −
√

3
2

ä Ä

sd(x, y) +
√

3
2

ä
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Fig. 1. L1(z) for x2 + y2 ≤ 1 L2(z) for x2 + y2 ≤ 1

With w(||X ||p) = 1/
»

1 − ||X ||2p, we obtain spherical Tchebyshev polynomi-

als Tm(X). Again, for p = 2, the odd-numbered ci(ξ) equal zero. The ci(ξ) for
even i and the Tm(z) are given by:

c0(ξ) = 2π c2(ξ) =
2π

3
(ξ2

1 + ξ2
2) c4(ξ) =

2π

5
(ξ2

1 + ξ2
2)2

c6(ξ) =
2π

7
(ξ2

1 + ξ2
2)3 c8(ξ) =

2π

9
(ξ2

1 + ξ2
2)4 . . .

and

T0(z) = 1

T1(z) = z

= sd(x, y)

T2(z) = z2 − 1
3

�

ξ2
1 + ξ2

2

Ð

=
Ä

sd(x, y) − 1√
3

ä Ä

sd(x, y) + 1√
3

ä
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T3(z) = z3 − 3
5

�

ξ2
1 + ξ2

2

Ð

z

= sd(x, y)
Ä

sd(x, y) −
√

3√
5

ä Ä

sd(x, y) +
√

3√
5

ä

T4(z) = z4 − 6
7

�

ξ2
1 + ξ2

2

Ð

z2 + 3
35

�

ξ2
1 + ξ2

2

Ð2

=

Å

sd(x, y) −
√

525+70
√

30
35

ãÅ

sd(x, y) +

√
525+70

√
30

35

ã

Å

sd(x, y) −
√

525−70
√

30
35

ãÅ

sd(x, y) +

√
525−70

√
30

35

ã

T5(z) = z5 − 10
9

�

ξ2
1 + ξ2

2

Ð

z3 + 5
21

�

ξ2
1 + ξ2

2

Ð2
z

= sd(x, y)

Å

sd(x, y) −
√

245+14
√

70
21

ãÅ

sd(x, y) +

√
245+14

√
70

21

ã

Å

sd(x, y) −
√

245−14
√

70
21

ãÅ

sd(x, y) +

√
245−14

√
70

21

ã

Let us now fix ξ = ξ∗ and take a look at the projected spherical polynomials

Vm,ξ∗(z) = Vm(ξ∗1z, . . . , ξ∗nz)

From the definition of Vm(X) in general, and the formulas and graphs for Lm(X)
and Tm(X) in particular, it is clear that for each ξ = ξ∗ the functions Vm,ξ∗(z)
are polynomials of degree m in z. Are these projected polynomials themselves
orthogonal? If so, what is their relationship to the univariate Legendre and
Tchebyshev polynomials? The answer to the first question is given in Theorem
2 while the answer to the second question, which follows partly from Theorem
2, is further elaborated in the next section.

Let us introduce the (univariate) linear functional c∗ acting on the variable
z, by

c∗(zi) = ci(ξ
∗) = Γ (zi) |ξ=ξ∗ (7)

In what follows we use the notation Vm(z) to denote the univariate polynomials
of degree m orthogonal with respect to the linear functional c∗. The reader
should not confuse these polynomials with the Vm(z) or the Vm(X). Note that
the Vm(z) are computed from orthogonality conditions with respect to c∗, which
is a particular projection of Γ , while the Vm,ξ∗(z) are a particular instance of
the spherical polynomials orthogonal with respect to Γ .

Theorem 2. Let the monic univariate polynomials Vm(z) satisfy the orthogo-

nality conditions

c∗(ziVm(z)) = 0 i = 0, . . . , m − 1

with c∗ given by (7), and let the multivariate functions Vm(X) = Vm(z) satisfy

the orthogonality conditions (4). Then

Hm(ξ∗)Vm(z) = pm(ξ∗)Vm,ξ∗(z)

= pm(ξ∗)Vm(X∗) X∗ = (ξ∗1z, . . . , ξ∗nz)
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In words, Theorem 2 says that the Vm(z) and Vm,ξ∗(z) coincide up to a
normalizing factor pm(ξ∗)/Hm(ξ∗). Or reformulated in yet another way, it says
that the orthogonality conditions and the projection operator commute.

With respect to the projection property it is important to point out that
c∗(zi) does not coincide with the one-dimensional version of cκ given by (2),
meaning (2) for n = 1 and κ = i. While in the one-dimensional situation, the
linear functional

c(zi) = ci =

Z 1

−1

w(|x|)xi dx (8)

gives rise to the classical orthogonal polynomials, we do not immediately retrieve
these classical polynomials from the projection, because the projected functional
c∗ given by (7) does not coincide with the functional c given by (8). Then
what is the connection between the spherical orthogonal polynomials Lm(z)
or Tm(z) and their univariate counterparts, the Legendre polynomials Lm(z) or
the Tchebyshev polynomials Tm(z)? This is explained in the next section.

3 Radial orthogonal polynomials

For another choice of cκ it is possible to retrieve the classical families of orthog-
onal polynomials. At the same time the spherical orthogonal polynomials, for
this particular cκ, coincide with some particular radial basis functions. Let for
simplicity n = 2 in X = (x1, . . . , xn) and p = 2 in ||X ||p. With

cj,i−j =

8

>

<

>

:

0 for j odd or i − j odd
Ç

i
2
j
2

å

Z 1

−1

ui du elsewhere
(9)

we obtain for the first few even-numbered ci(ξ):

c0(ξ) = 2 c2(ξ) =
2

3
(ξ2

1 + ξ2
2) c4(ξ) =

2

5
(ξ2

1 + ξ2
2)2 . . .

while the odd-numbered ci(ξ) are zero. With the functional Γ still defined as
before, Γ (zi) takes for cj,i−j as given by (9) and w(||X ||p) = 1, the form

Γ (zi) =

Ç

Z 1

−1

ui du

å

(ξ2
1 + ξ2

2)i/2

and we obtain from (4) and (5) the orthogonal bivariate Legendre functions

R0(x, y) = R0(z) =1

R1(x, y) = R1(z) =z = sd(x, y)

R2(x, y) = R2(z) =z2 − 1

3
= sd2(x, y) − 1

3

R3(x, y) = R3(z) =z3 − 3

5
z = sd(x, y)

Å

sd2(x, y) − 3

5

ã
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The projection property as formulated in Theorem 2 is still valid, now with the
functional c∗ equal to the functional c given in (8). Hence these Rm(z) coincide
on every one-dimensional subspace of R

2 with the well-known univariate Legen-
dre polynomials Lm(z). The main difference between the Rm(X) and Lm(X) is
that they satisfy different orthogonality conditions. While the Rm(X) satisfy

Z 1

−1

ziRm(z) dz = 0 z = sd(X) i = 0, . . . , m − 1

which is a radial version of the classical orthogonality condition

Z 1

−1

ziLm(z) dz = 0 i = 0, . . . , m − 1

for the Legendre polynomials Lm(z), the spherical Legendre polynomialsLm(z) =
Lm(x, y) satisfy (4) which is a truly multivariate orthogonality. The Rm(X) are
also related to the radial version of the classical Legendre polynomials Lm(||X ||p)
and appear as such in [6].
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Fig. 2. R3(z) for x2 + y2 ≤ 1 L3(||X||2) for x2 + y2 ≤ 1

In a similar way, the univariate Tchebyshev polynomials can be retrieved
with

cj,i−j =

8

>

<

>

:

0 for j odd or i − j odd
Ç

i
2
j
2

å

Z 1

−1

ui

√
1 − u2

du elsewhere
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4 Gaussian cubature formulas

Let us again concentrate on the real-valued cκ given by (2). If the functional Γ
is positive definite, meaning that

∀ξ ∈ R
2 : Hm(ξ) > 0 m ≥ 0

then the zeroes z
(m)
i (ξ∗) of Vm,ξ∗(z) are real and simple because the functional c∗

given by (7) is positive definite. Then according to the implicit function theorem,

there exists for each z
(m)
i (ξ∗) a unique holomorphic function φ

(m)
i (ξ∗) such that

in a neighbourhood of z
(m)
i (ξ∗),

Vm,ξ∗(z) = 0 ⇐⇒ z = φ
(m)
i (ξ∗) (10)

Since this is true for each ξ = ξ∗ because Γ is positive definite, this implies that

for each i = 1, . . . , m the zeroes z
(m)
i can be viewed as a holomorphic function

of ξ, namely z
(m)
i = φ

(m)
i (ξ). Let us denote

Wm−1(u) = Γ

ÅVm(z) − Vm(u)

z − u

ã

A
(m)
i (ξ) =

Wm−1,ξ(z
(m)
i )

V ′
m,ξ(z

(m)
i )

=
Wm−1(φ

(m)
i (ξ))

V ′
m(φ

(m)
i (ξ))

(11)

Here the functions Wm−1(z) are also spherical polynomials, now of degree m−1
in z. Then the following cubature formula can rightfully be called a Gaussian
cubature formula. The proof of this fact can be found in [2].

Theorem 3. Let P(z) be a polynomial of degree 2m−1 belonging to R(ξ)[z], the

set of polynomials in the variable z with coefficients from the space of multivariate

rational functions in the real ξk with real coefficients. Let the functions φ
(m)
i (ξ)

be given as in (10) and be such that

∀ξ ∈ S2 : j 6= i =⇒ φ
(m)
j (ξ) 6= φ

(m)
i (ξ)

Then
Z

. . .

Z

||X||p≤1

w(||X ||p) P(
P n

k=1 ξkxk) dX =
P m

i=1 A
(m)
i (ξ)P(φ

(m)
i (ξ))

Let us illustrate Theorem 3 with a bivariate example to render the achieved
result more understandable. Take

P(z) =
ξ1

ξ2 + 1
z3 +

ξ2

ξ2
1 + 1

z2 + z + 10

and consider again the ℓ2-norm. Then

Z Z

||(x,y)||≤1

P(ξ1x + ξ2y)dx dy =
π
�

ξ3
2 + ξ2ξ

2
1 + 40ξ2

1 + 40
Ð

4 (ξ2
1 + 1)

(12)
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The exact integration rule given in Theorem 3 applies to (12) with w(||X ||p) = 1
and m = 2. From the orthogonal function V2(x, y) = V2(z) given in (6), we obtain
the zeroes

φ
(2)
1 (ξ) =

1

2

»

ξ2
1 + ξ2

2 φ
(2)
2 (ξ) = −1

2

»

ξ2
1 + ξ2

2

and the weights

A
(2)
1 (ξ) = A

(2)
2 (ξ) =

π

2

The integration rule

A
(2)
1 P(φ

(2)
1 (ξ)) + A

(2)
2 P(φ

(2)
2 (ξ))

then yields the same result as (12). In fact, the Gaussian m-point cubature for-
mula given in Theorem 3 exactly integrates a parameterized family of polyno-
mials, over a domain in R

2, or more generally R
n. The m nodes and weights are

themselves functions of the parameters ξ1 and ξ2. To illustrate this we graph two
instances of this family P(ξ1x+ ξ2y), namely for the choices (ξ1, ξ2) = (3/5, 4/5)
and (ξ1, ξ2) = (−

√
2/2,−

√
2/2).
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Fig. 3. (ξ1, ξ2) = (3/5, 4/5) (ξ1, ξ2) = (−
√

2/2,−
√

2/2)

For the ℓ1- and ℓ∞-norm similar computations can be performed: after ob-
taining the ci(ξ) for these norms, the orthogonal polynomial V2(z) constructed
from the ci(ξ) delivers all necessary ingredients for the application of the Gaus-
sian cubature rule.

More properties of the spherical orthogonal functions Vm(x, y) can be proved,
such as the fact that they are the characteristic polynomials of certain parametri-
zed tridiagonal matrices [4]. The connection between their theory and the theory
of the univariate orthogonal polynomials is very close, while more multivariate
in nature than their radial counterparts.
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