
Combining the Radon, Markov and Stieltjes

transforms for object reconstruction

Annie CUYT and Brigitte VERDONK

Dept of Mathematics and Computer Science, University of Antwerp
Middelheimlaan 1, B–2020 Antwerpen, Belgium
{annie.cuyt, brigitte.verdonk}@ua.ac.be

Abstract. In shape reconstruction, the celebrated Fourier slice theo-
rem plays an essential role. By virtue of the relation between the Radon
transform, the Fourier transform and the 2-dimensional inverse Fourier
transform, the shape of an object can be reconstructed from the knowl-
edge of the object’s Radon transform. Unfortunately, a discrete imple-
mentation requires the use of interpolation techniques, such as in the
filtered back projection.
We show how the need for interpolation can be overcome by using the re-
lationship between the Radon transform, the Markov transform and the
2-dimensional Stieltjes transform. When combining the knowledge of an
object’s Radon transform for discrete angles θ, with the less well-known
Padé slice theorem, the object under consideration can be reconstructed
from the solution of a linear least squares problem.
The new technique is applicable in all higher dimensions. Here we illus-
trate it through the reconstruction of some interesting two-dimensional
objects.

1 The Radon, Markov and Stieltjes integral transforms

The Radon transform R~ξ (u) of a square-integrable n-variate function f(~x) with

~x = (x1, . . . , xn) is defined as

R~ξ (u) =

∫

Rn

f(~x) δ(~ξ~x − u) d~x d~x = dx1 . . . dxn

with ||~ξ|| = 1 and ~ξ~x = u an (n−1)-dimensional manifold orthogonal to ~ξ. When

n = 2, ~ξ is fully determined by an angle θ and

Rθ(u) =

∫ +∞

−∞

∫ +∞

−∞

f(t, s) δ(t cos θ + s sin θ − u) dt ds

For n = 3, ~ξ is determined by angles θ and φ and

Rθ,φ(u) =

∫

R3

f(t, s, v) δ(t cos φ cos θ + s cosφ sin θ + v sin φ − u) dt ds dv



2

In the sequel of the text, to simplify notation, we mainly focus on the two-
dimensional case, without loss of generality. Let the square-integrable function
f(t, s) be defined in a compact region A of the first quadrant t ≥ 0, s ≥ 0 of the
plane. According to a fundamental property of the Radon transform Rθ(u) of
f(t, s) [7], the following relation holds for any square-integrable function F (u):

∫ +∞

−∞

Rθ(u)F (u) du =

∫ ∞

0

∫ ∞

0

f(t, s)F (t cos θ + s sin θ) dt ds (1)

If we take F (u) = 1/(1 + zu), then

gθ(z) =

∫ +∞

−∞

Rθ(u)

1 + zu
du =

∫ ∞

0

∫ ∞

0

f(t, s)

1 + (t cos θ + s sin θ)z
dt ds (2)

A Markov function is defined to be a function with an integral representation

g(z) =

∫ b

a

f(u)

1 + zu
du −∞ < a ≤ 0 ≤ b < +∞ (3)

z 6∈] −∞,−1/b]∪ [−1/a, +∞[

where f(u) is non-trivial and positive and the moments

ci =

∫ b

a

uif(u) du i = 0, 1, . . . (4)

are finite. If f is nonzero in [a, b] with 0 < a < b then (3) is considered on [0, b].
If f is nonzero in [a, b] with a < b < 0, then (3) is considered on [a, 0]. A Markov
series is defined to be a series

∞
∑

i=0

(−1)iciz
i (5)

which is derived by a formal expansion of (3). The Markov function g(z) is
also called the Markov transform of the function f(u). Furthermore, in case (5)
is the formal series expansion of a Markov function with a nonzero radius of
convergence, the Markov moment problem, in which one reconstructs f(u) from
the moments ci, is determinate. In other words, given the moments ci, a function
f(u) exists which allows the representation of ci by (4) and this function f(u) is
uniquely determined.

A bivariate Stieltjes function g(z, w) is defined by the integral representation

g(z, w) =

∫ ∞

0

∫ ∞

0

f(t, s)

1 + (zt + ws)
dt ds (6)

where f(t, s) is non-trivial and positive. Its finite real-valued moments are given
by

cij =

∫ ∞

0

∫ ∞

0

tisjf(t, s) dt ds
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A formal expansion of (6) provides the bivariate Stieltjes series

∞
∑

i,j=0

(

i + j

i

)

(−1)i+jcijz
iwj (7)

The function g(z, w) is also called the bivariate Stieltjes transform of f(t, s).
Now let us have another look at (2) and identify our object under recon-

struction with its characteristic function. If f(t, s) is the characteristic function
of a compact set A lying in the first quadrant, then gθ(z) is a Markov function,
because Rθ(u) is zero outside a region of compact support. Furthermore, since
gθ(z) = g(z cos θ, z sin θ), there is a close link between the bivariate Stieltjes
transform of the characteristic function of A and the Markov transform of its
Radon transform. In order to translate these properties into an algorithm for
the reconstruction of A from the knowledge of its Radon transform Rθ(u), we
need to show that its Markov transform is easy to compute.

2 The Padé slice property

Given a series of the form (5), one constructs Padé approximants of this series
as follows. With the moments ci introduced in (4), the coefficients a0, . . . , am+k

and b0, . . . , bm are computed such that for

pm+k,m(z) =

m+k
∑

i=0

aiz
i qm+k,m(z) =

m
∑

i=0

biz
i

the series expansion of (gqm+k,m − pm+k,m)(z) satisfies

∞
∑

i=0

diz
i =

(

∞
∑

i=0

(−1)iciz
i

)

qm+k,m(z) − pm+k,m(z) = O(z2m+k+1) (8)

In other words, the 2m + k + 2 coefficients a0, . . . , am+k and b0, . . . , bm are
determined from the 2m + k + 1 conditions d0 = 0, . . . , d2m+k = 0 and an
additional normalization condition for pm+k,m(z)/qm+k,m(z). The irreducible
form of pm+k,m(z)/qm+k,m(z) is denoted by rm+k,m(z) and is called the (m +
k, m) Padé approximant. It is usually normalized by putting the constant term
in the denominator equal to 1. The following theorems play a crucial role in our
novel object reconstruction technique.

Theorem 1. [1, p. 228] For the Markov function (3), each sequence of Padé ap-

proximants {rm+k,m(z)}m∈N with k ≥ −1 converges to (3) for z 6∈]−∞,−1/b]∪
[−1/a, +∞[. The rate of convergence is governed by

lim sup
m→∞

|g(z) − rm+k,m(z)|1/m ≤
∣

∣

∣

∣

∣

√

1/z + b −
√

1/z + a
√

1/z + b +
√

1/z + a

∣

∣

∣

∣

∣
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Padé approximants have been generalized to higher dimensions by several au-
thors in different ways. For an overview and comparison of these definitions the
reader is referred to [5]. For our purpose the definition given in [4, 3] is most
useful. Again without loss of generality, we repeat it only for bivariate functions,
but it can be defined in any number of variables.

Given the moments cij , one can compute an (m+k, m) homogeneous bivari-
ate Padé approximant of (7) as follows. First, we introduce the homogeneous
expressions

Aℓ(z, w) =
∑

i+j=ℓ

aijz
iwj Bℓ(z, w) =

∑

i+j=ℓ

bijz
iwj

to define the polynomials

pm+k,m(z, w) =

(m+k)(m+1)
∑

ℓ=(m+k)m

Aℓ(z, w)

qm+k,m(z, w) =

(m+k+1)m
∑

ℓ=(m+k)m

Bℓ(z, w)

Second, we introduce the notation

Cℓ(z, w) =
∑

i+j=ℓ

(

ℓ

i

)

cijz
iwj (9)

and write down the homogeneous accuracy-through-order conditions

∞
∑

i,j=0

dijz
iwj =

(

∞
∑

ℓ=0

(−1)ℓCℓ(z, w)

)

qm+k,m(z, w) − pm+k,m(z, w) (10)

= O
(

ziwj , i + j ≥ (m + k + 2)m + k + 1
)

It has been shown [4, pp. 60–61] that a nontrivial solution of these conditions
can always be computed. Moreover, all solutions pm+k,m(z, w)/qm+k,m(z, w) de-
liver the same unique irreducible form rm+k,m(z, w) which is called the homo-
geneous Padé approximant of (7). A proper normalization of rm+k,m(z, w) can
still be chosen, but differs most of the times from the univariate normalization
qm+k,m(0) = 1 since the denominator of rm+k,m(z, w) need not start with a
constant term. It starts with a homogeneous expression in z and w of as low
degree as possible.

This homogeneous generalization of the Padé approximant is the only one
to satisfy the following powerful slice property, formulated in Theorem 2. The
Markov function given in (2),

gθ(z) =

∫ ∞

0

∫ ∞

0

f(t, s)

1 + (t cos θ + s sin θ)z
dt ds (11a)

= g(z cos θ, z sin θ) − π/2 < θ ≤ π/2 (11b)
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is viewed here as a particular slice of the bivariate Stieltjes transform. Let us

denote the univariate (m+k, m) Padé approximant of gθ(z) by r
(gθ)
m+k,m(z). Then

the following projection property holds, even for a more general class of functions
than the Stieltjes transform g(z, w).

Theorem 2. [8, 2] Let g(z, w) be holomorphic in the origin and let gθ(z) =
g(z cos θ, z sin θ). The homogeneous Padé approximant rm+k,m(z, w) of g(z, w)
satisfies

rm+k,m(z cos θ, z sin θ) = r
(gθ)
m+k,m(z) − π/2 < θ ≤ π/2

where r
(gθ)
m+k,m(z) is the univariate Padé approximant of gθ(z).

In other words, restricting the homogeneous Padé approximant of g(z, w) to the
slice

Sθ = {(z cos θ, z sin θ) | z ∈ R} (12)

is equivalent to computing the univariate Padé approximant of the slice function
gθ(z). Because of the link between the Markov, the Radon and the Stieltjes
transform expressed in (2) and (11), we have that

Cℓ(z cos θ, z sin θ) =

ℓ
∑

i=0

(

ℓ

i

)

ci,ℓ−i cosi θ sinℓ−i θ ℓ = 0, 1, 2, . . . (13)

are the univariate moments of the Radon transform Rθ(u), which we denote in

the sequel by C
(θ)
ℓ .

3 Algorithm for use with discrete angles θ.

It is now easy to reconstruct the characteristic function f(t, s) of a compact set
A lying in the first quadrant, from its Radon transform. With the tools discussed
in Section 1 and 2, we can formulate the following reconstruction algorithm. In
order to have −1 ≤ a(θ) ≤ b(θ) ≤ 1 in Theorem 1, we further assume that A is
also lying within the unit circle. This is only a matter of scaling.

– Input of the algorithm is some indirect information that is available on the
object A, either its Radon transform for a discrete number of angles θn (bi-

variate case) or θn and φk (trivariate case). If the univariate moments C
(θ)
ℓ of

the Radon transform or the multivariate moments cij of f(t, s) (bivariate) or
cijk of f(t, u, v) (trivariate) are given instead, one skips the first, respectively
the first two steps of the algorithm.

– Compute the moments

C
(θ)
ℓ =

∫ b(θ)

a(θ)

uℓRθ(u) du
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for a discrete number of angles θ = θn with 0 ≤ n ≤ N . From the parameter-

ized moments C
(θn)
ℓ the bivariate moments ci,ℓ−i can be computed by solving

(13), possibly in the least squares sense. To this end, the Radon transform
must be available for a sufficient number of angles θ.

– With the moments cij one computes, for successive m, the homogeneous
Padé approximant rm−1,m(z, w) of the Stieltjes transform g(z, w). Increas-
ing m to m + 1, implies adding the moments ci,2m−i and ci,2m+1−i to the
data. The latter may imply an increase of the number of angles θ for which
(13) can be written down. Theorem 1 used in conjunction with Theorem 2
guarantees that on each slice Sθn

the {rm−1,m(z)}m∈N converge rapidly to
g(z, w) restricted to that slice. The correct relationship between m and the
number N of angles θ is as follows:
1. Start with m = 1 and compute r0,1(z, w) from c00, c10 and c01, or equiv-

alently from C
(θ0)
0 and C

(θn)
1 for n = 0, 1. The latter two parameterized

moments allow to obtain the two bivariate moments c10 and c01.
2. As long as ||rm−2,m−1 − rm−1,m||/||rm−1,m|| is not small enough, in-

crease m to m + 1 and compute rm,m+1(z, w). To this end we need to
know the moments ci,2m−i and ci,2m+1−i. These can be computed from

C
(θ0)
2m , . . . , C

(θ2m)
2m and C

(θ0)
2m+1, . . . , C

(θ2m+1)
2m+1 using (13).

3. In the end, for the last computed rm−1,m(z, w), we have N = 2m + 1.
Since the sequence {rm−1,m(z, w)}m converges quite rapidly to g(z, w),
N is usually not very large.

– At the same time, for each −π/2 < θn ≤ π/2 and each 0 ≤ zj ≤ 1, the
value of the Stieltjes transform g(z, w) evaluated at (zj cos θn, zj sin θn) can
be approximated to high accuracy by a cubature formula

L
∑

i=1

ωi

1 + zj(ti cos θn + si sin θn)
f(ti, si) n = 0, 1, . . . , j = 0, 1, . . .

with weights ωi and nodes (ti, si). Subsequently the values f(ti, si) are com-
puted from the least squares problem

L
∑

i=1

ωi

1 + zj(ti cos θn + si sin θn)
f(ti, si) ≈ g(zj cos θn, zj sin θn) (14a)

= lim
m→∞

rm−1,m(zj cos θn, zj sin θn)

(14b)

– The reconstruction of A is identified with

A ≈ {(ti, si) | f(ti, si) ≥ 0.5}

The threshold 0.5 is chosen because for the original shape f(t, s) = 1 inside
A and f(t, s) = 0 outside A.

Note that the homogeneous Padé approximant rm+k,m(z, w) is expressed in
cartesian coordinates for its computation and that we switch to polar coor-
dinates to invoke Theorem 1 and 2 and write down the linear system (14). Since
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rm+k,m(z) is a bivariate rational function and not a set of discrete data, this
does not create a problem at all.
Since the homogeneous Padé approximant can be defined analogously in any
number of variables, the procedure for three-dimensional shape reconstruction
is entirely similar. Then we restrict ourselves to the slices

Sθ,φ = {(z cosφ cos θ, z cosφ sin θ, z sin φ) | z ∈ R}

and the 3-dimensional version of (1) and the Theorems 1 and 2 yields

∫ +∞

−∞

Rθ,φ(u)

1 + zu
du =

∫ ∞

0

∫ ∞

0

∫ ∞

0

f(t, u, v)

1 + (t cos φ cos θ + u cosφ sin θ + v sin φ)z
dt du dv

= lim
m→∞

rm+k,m(z cosφ cos θ, z cosφ sin θ, z sin φ)

Note that the vector (cosφ cos θ, cosφ sin θ, sin φ) generating the 1-dimensional
slice Sθ,φ belongs to the 3-dimensional unit sphere.

4 Numerical illustration

Without loss of generality we only give 2-dimensional numerical examples. Within
the set of interesting objects A we present a non-convex example (reconstruc-
tion of the lemniscate in Figure 1) and an example with non-connected boundary
(reconstruction of the ellips with hole in Figure 2).
In the visualization of the reconstructed planar object, we delimit the original
shape in black and show the reconstructed area in grey. With the reconstruc-
tion of the object, we also list the number of angles θn and the number of radial
points zj used in the least squares formulation (14), the degree m of the Padé de-
nominator and the relative error ǫ = maxx2+y2≤1 |rm−2,m−1 − rm−1,m|/|rm−1,m|
in the computation of the Padé approximant. The value ǫ is an estimate of the
relative error present in the right hand side of the linear least squares problem
(14).
The least squares problem (14), which is an inverse problem, is in general ill-
conditioned and therefore a regularization technique must be applied. In all of
the following examples we have found the technique known as truncated SVD
[6] to do an excellent job.
For the approximation of g(zj cos θn, zj sin θn) we use the simple compound 4-
point Gauss-Legendre product rule [9, pp. 230–231]

∫ a+h

a

∫ b+k

b

f(t, s)

1 + zj(t cos θn + s sin θn)
dt ds ≈ hk

4
∑

i=1

f(ti, si)

1 + zj(ti cos θn + si sin θn)

(ti, si) = (a +
3 ±

√
3

6
h,b +

3 ±
√

3

6
k)

with −1 ≤ a < a + h ≤ 1,−1 ≤ b < b + k ≤ 1. For Figure 1, h = 1/16 = k and
for Figure 2, h = 1/32 = k.



8

x

y

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1. A = {(t, u) |
(

(t − 0.1)2 + (u − 0.1)2 + 1/4
)2

− (t − 0.1)2 = 1/16}
#θn = 80, #zj = 60, h = k = 1/16, m = 10, ǫ = 5.3 × 10−7
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Fig. 2. A = {(t, u) | 81t2/100 + 4u2/9 ≤ 1} \ {(t, u) | t2 + u2 < 1/16}
#θn = 25, #zj = 15, h = k = 1/32, m = 10, ǫ = 1.2 × 10−4
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