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Abstract—Antenna position estimation is an important prob-
lem in large irregular arrays where the positions might not be
known very accurately from the start. In a previous paper we
presented a method using harmonically related signals transmit-
ted from an Unmanned Aerial Vehicle (UAV), with the added
advantage that the UAV can be in the near-field of the receiving
antenna array. It was shown that the method delivers excellent
results using ideal synthetic data with added noise. In this paper
we continue the work by simulating the problem in a full-wave
solver. Although the results are less accurate than when synthetic
data are used, due to the effects of mutual coupling, the method
still performs satisfactorily, with errors smaller than 4% of the
smallest transmitted wavelength.

Index Terms—Antenna Arrays, Antenna Measurements, Mu-
tual Coupling, Unmanned Aerial Vehicles

I. INTRODUCTION

Large irregular antenna arrays such as the Low Frequency
Array (LOFAR) [1] and the Square Kilometre Array (SKA) [2]
have the disadvantage that the position of each antenna needs
to be verified after installation. Connection problems such as
switched cables will also translate to positional errors. By
using signals transmitted from an Unmanned Aerial Vehicle
(UAV) and received at each individual element, proposed
methods such as those in [3] and [4] can accurately find the
positions, compensating for inaccurate placements during the
installation phase.

In [4], we specifically focused on cases where the UAV is
in the near-field of the array. It was shown that the method
delivers sufficiently accurate results with synthetic data, with
the Root Mean Square (RMS) error less than 1% of the small-
est transmitted wavelength at a signal-to-noise ratio (SNR) of
15 dB.

In this paper, we investigate the performance of the method
further with the effect of mutual coupling included, by simu-
lating the problem in a full-wave solver, FEKO [5].

II. SUB-SAMPLED EXPONENTIAL ANALYSIS OF THE
LINEARISED NEAR-FIELD PROBLEM

In order to ensure that this paper is self-contained, we
provide a brief summary of the mathematical details presented
in [4].

The UAV transmits narrowband odd harmonic signals

Si(tp) = si(tp) exp(jωitp)

towards the array at time tp when located at position rp =
xpx + ypy + zpz where si(tp) is assumed to remain con-
stant during the measurement of Si(tp). The index i ∈ N
distinguishes between frequencies ωi = (2i + 1)ω0 where
ω0 = 2πf0 is the base frequency.

Let the reference antenna element have position
a0 = (0, 0, 0), coinciding with the origin. All M antenna
elements are assumed to be located in the (x, y)-plane so that



the mth element is at position am = umx+ vmy+(0)z with
m = 0, . . . ,M − 1. The UAV is in the radiating near-field of
the antenna, so a curved phase front is incident on the array
and the time delay of incidence on am relative to a0 at time
tp is

τm (xp, yp, zp) =
∥rp∥ − ∥rp − am∥

c

=
rp −

√
r2p + u2

m + v2m − 2(umxp + vmyp)

c
,

(1)
where rp = ∥rp∥, rp−am is the vector from the mth antenna
element to the UAV, and c is the propagation velocity of the
signal, or the speed of light in free space.

To extract the positions (um, vm, 0) we collect samples at
each antenna element while the UAV is at a fixed position rp
at time tp, with p = 1, . . . , P [6]. Then from the narrowband
assumption, the samples at the mth element at time tp for
frequency i are:

fmip = Si(tp + τmp)

≈ si(tp) exp(jωitp) exp(jωiτmp)

= si(tp) exp(jωitp) exp ((2i+ 1)Ψmp) .

(2)

where

Ψmp = jω0τmp,

τmp = τm (xp, yp, zp) =
1

c

(
rp −

√
r2p +∆mp

)
,

∆mp = u2
m + v2m − 2(umxp + vmyp).

(3)

To get rid of the frequency and positional dependence in
(2), we divide the sample sets fmip by the reference antenna
element’s samples

f0ip = si(tp) exp(jωitp) exp (0)

to give

f ′
mip =

fmip

f0ip
= exp ((2i+ 1)Ψmp) . (4)

In the dense case where |2Ψmp| < π and no aliasing occurs,
the base terms Ψmp can be recovered from (4) using any
Prony-like method. Otherwise, we use the de-aliasing method
described in [4] to solve the resulting sub-sampled exponen-
tial analysis problem, which uses co-prime scale parameters
σj , j = 1, 2. These parameters are generated from two distinct
UAV flights performed at different heights zpj and overlapping
planar flight paths. This gives us samples from 2P positions
rpj

= xpx+ ypy+ zpj
z normalised by f0ipj

according to (4)
at each element

f ′
mipj

= exp
(
(2i+ 1)Ψmpj

)
= exp

(
(2i+ 1) j

ω0

c

(
rpj −

√
r2pj

+∆mp

))
.

(5)

The near-field base terms Ψmpj
are non-linear, so we first

linearise the model with a first order Taylor series partial sum.
During the linearisation rpj

remains fixed and

gpj (um, vm) = rpj −
√
r2pj

+∆mp (6)

only varies with the planar position (um, vm). We approximate
(6) with

Lp(um, vm) = rpj
−

√
r2pj

+ ∆̃mp +
(um − ũm)(xp − ũm)√

r2pj
+ ∆̃mp

+
(vm − ṽm)(yp − ṽm)√

r2pj
+ ∆̃mp

=
um(xp − ũm) + vm(yp − ṽm)√

r2pj
+ ∆̃mp

+ κmpj

(7)
where ∆̃mp = ũ2

m + ṽ2m − 2(ũmxp + ṽmyp) and

κmpj = rpj −
√
r2pj

+ ∆̃mp −
ũm(xp − ũm) + ṽm(yp − ṽm)√

r2pj
+ ∆̃mp

denote the constant terms in (7) for a certain estimation
(ũm, ṽm) of the mth antenna element’s true planar position.
Through an iterative process, the estimation of (ũm, ṽm)
gets updated so that the approximation in (7) becomes more
accurate as the estimation gets closer to the true value of
(um, vm). The remaining function

Lp(um, vm)− κmpj =
um(xp − ũm) + vm(yp − ṽm)√

r2pj
+ ∆̃mp

(8)

is used to solve the positions of the elements in the antenna
array in the near-field sub-Nyquist case, since the common
factor

Cmpj
=

1√
r2pj

+ ∆̃mp

can be used to model σj , j = 1, 2 if we introduce the virtual
UAV position Rp = xpx+ ypy+ Zpz with virtual height Zp

and Rp = ∥Rp∥, so that the spatial Nyquist criterion∣∣∣2(Rp −
√
R2

p +∆mp

)∣∣∣ < λ0

2
(9)

is met for all m and p, and λ0 is the wavelength of the base
frequency f0. Then, let

Cmp =
1√

R2
p + ∆̃mp

such that
Cmpj = σjmpCmp. (10)

We start the iterative process for each antenna with ũm =
ṽm = 0 so that ∆̃mp = 0 and κmpj

= 0. For every iteration
step a new estimation of (ũm, ṽm) and thus ∆̃mp is found,
while rpj remains constant throughout. The values of σjmp

and Rp get updated at every iteration step to give (10), with
the only restrictions being that the spatial Nyquist criterion in
(9) must be met and σjmp, j = 1, 2 must be co-prime in order
to recover from aliasing. Assuming rp1

> rp2
then Cmp2

>
Cmp1 for all m and p. From the ratios

σ2mp

σ1mp
=

Cmp2

Cmp1

(11)



rounded to two significant digits we get co-prime values for
σ1mp and σ2mp. Finally, we denote

σjmpΦmp = j
2ω0

c

(
rpj
−
√

r2pj
+∆mp − κmpj

)
≈ j

2ω0

c

um(xp − ũm) + vm(yp − ṽm)√
r2pj

+ ∆̃mp


= j

2σjmpω0

c

um(xp − ũm) + vm(yp − ṽm)√
R2

p + ∆̃mp

 (12)

in order to find the unique de-aliased argument Φmp from the
intersection of the two sets (j = 1, 2):{

Φmp +
j2π

σjmp
l : l = 0, . . . , σjmp − 1

}
. (13)

A new estimation for the antenna position (ũm, ṽm) is found
using

Φmp = j
2ω0

c

(
rpj
− κmpj

σjmp
−
√
R2

p +∆mp

)
(14)

as described in [4]. The process is repeated until

ϵ =
√
(um − ũm)2 + (vm − ṽm)2 < 0.01.

A summary of the algorithm is described in Algorithm 1.

Algorithm 1 Antenna Position Estimation in the Near-Field
1: Initialize f0, i, P
2: Collect samples f ′

mipj
at 2P UAV positions as in (5)

3: for m = 1 to M − 1 do
4: Compute the aliased exp

(
2Ψmpj

)
with Root-

MUSIC [7]
5: Initialize um ← 0, vm ← 0
6: repeat
7: ũm ← um, ṽm ← vm
8: Calculate ∆̃mp, Cmpj and κmpj

9: Find co-prime values for σ1mp and σ2mp from (11)
10: Find the de-aliased Φmp from the intersections in

(13)
11: Solve (um, vm) from (14) as the intersections of

circle pairs as described in [4]
12: until ϵ < 0.01
13: end for

III. EXPERIMENTAL SETUP

Our experiment consists of a full-wave method of mo-
ment (MoM) simulation using FEKO [5]. A simple model
is created to represent the 96 antennas of a LOFAR low-
band antenna (LBA) sub-station. The elements are inverted-V
dipoles, with the height of the vertical pole measuring 1.7m,
and each arm having a length of 1.38m. Fig. 1 shows a single
element as displayed in FEKO.

A voltage source of 1V is added to the port of a 2m-long
dipole, representing the UAV. Both the transmit and receive
antennas have 50Ω loads.

Fig. 1. Example of the inverted-V dipole antenna used as array elements in
FEKO. The port is located at the end of one of the dipole arms.

A realistic flight path with P = 16 positions was chosen,
taking on the shape of a 100m × 100m square, slightly
altered by the effect of the wind. The positions of the antenna
elements, as well as the UAV flight path, are shown in Fig. 2.

The frequencies used in the simulation are 31.79MHz,
44.51MHz, 57.23MHz and 69.94MHz. These are equivalent
to the 5th, 7th, 9th and 11th harmonics of the base frequency
f0 = 6.36MHz, meaning i = [2, 3, 4, 5].
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Fig. 2. Antenna positions and UAV flight path.

IV. RESULTS

We calculate the error in position of each antenna individu-
ally in both directions, as a fraction of the smallest transmitted
wavelength λ11 = 4.3m. The results are shown in the middle
panels of Fig. 3 and Fig. 4. The mean errors of all antenna
positions in the x- and y-direction are 0.023 λ11 and 0.031
λ11, respectively.

In [4], at an SNR of 15 dB, the RMS errors in both
directions are smaller than 0.01 λ11. It is to be expected that
the results of the FEKO-simulated experiment will be less
accurate than those of [4], as the physical properties are now



included, leading to mutual coupling. However, the errors in
Fig. 3 and Fig. 4 are sufficiently low for accurate position
estimation.

To investigate further, we scale the entire array with a factor
of 0.5. This means the position of each element changes
from (um, vm) to

(
um

2 , vm
2

)
. The element dimensions remain

unchanged, as well as the UAV dimensions, flight path and
frequencies. As the spacing between the elements becomes
smaller, we expect the mutual coupling effects to be stronger
and the results to worsen. This expectation is confirmed, as
seen in the top panels of Fig. 3 and Fig. 4, where the mean
errors in the x- and y-direction are 0.11 λ11 and 0.098 λ11,
respectively. In a similar fashion, we also scale the array with a
factor 1.5, to enlarge the spacing between the elements. These
results are shown in the bottom panels of Fig. 3 and Fig. 4. As
expected, the results have improved from the top panels, as the
mutual coupling is weakened. The mean Euclidean errors of
the three experiments are summarised in Table I. Here we can
clearly see the trend that a larger spacing between elements
leads to smaller errors.

As part of future work, we will investigate the case of
switched cables in the array, and also incorporate a calibration
technique to mitigate the mutual coupling effects.

TABLE I
POSITIONAL ERRORS RELATING TO ELEMENT SPACING

Scale Mean Euclidean error (λ11)

0.5 0.17
1 0.042

1.5 0.038

V. CONCLUSION

In this paper, we extend the work done in [4], which
described the results of the sub-sampled antenna position
estimation in the near-field using synthetic data. To advance to
a scenario that is truer to the practical system, we specifically
focus on a simulated experiment including mutual coupling.
We do this by creating a FEKO model based on the LOFAR
LBA, with a UAV transmitting harmonically related signals
from known positions in the sky.

The results prove to be accurate, with the mean errors
in both x- and y-directions lower than 4% of the smallest
transmitted wavelength. We also see how the spacing between
the array elements relates to the positional error, with larger
separations translating into smaller errors due to decreased
mutual coupling.

Future work includes investigating the case of switched
cables, incorporating a calibration method, investigating the
impact of other practical effects, and testing our method with
practical data of LOFAR.
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Fig. 3. Positional errors in the x-direction in terms of the smallest transmitted
wavelength λ11 = 4.3m. The nominal positions are scaled coordinates of
the LOFAR LBA elements, with a scale factor of 0.5, 1 and 1.5 for the top,
middle and bottom panels, respectively.
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