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A B S T R A C T

Reciprocating mechanisms are widely used in industry because a complex movement is achieved
by a simple rotation of the driven axis. Given the tendency to evolve towards more energy-
efficient machines and flexible production, motion profile optimization offers a cost-effective
solution as it results in large energy savings without any hardware adaptions. However, the
existing optimizers are used off-line because the position-dependent parameters such as load
torque and inertia of the system model must be known in advance. When the actual machine
differs from the model, or when parameters change during operation due to process flexibility,
the off-line determined motion profile is no longer optimal and results in unnecessary energy
consumption.

This paper therefore presents an on-line approach in which the varying inertia is estimated
on the actual machine and used for updating the motion profile. The sliding discrete Fourier
transform is proposed for real-time estimation and a gradient-based algorithm combined with
Chebyshev polynomials is proposed for on-line optimization. Experimental validation on an
industrial pick-and-place unit proves that the presented method leads to similar energy savings
as off-line optimizers, but without prior knowledge of the parameters, and is moreover capable
of handling mass changes during operation.

. Introduction

In modern automated machinery a load often needs to be driven repetitively between two specified positions at high speed.
eciprocating mechanisms, which are often rod mechanisms, are suited for this purpose because the driven rotary motion is

nherently converted to the desired and often complex motion at the tool linkage. Next to that, one actuator can be used for each
ask. This not only enables faster operation compared to mechanical transmissions such as camshafts [1] but also enables modular
ystem design [2]. But as the number of actuators increases, optimization of each individual movement becomes more important to
eep energy consumption at a minimum. Considering that electrical motors are responsible for about 45% of the global electricity
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consumption [3], there is a strong interest in developing techniques that achieve the same machine performance with less energy
and/or increased performance for the same hardware.

Motion profile optimization is one of these techniques. This technique takes into account that rod mechanisms are characterized
by a high position-dependency of the mechanical parameters such as load torque and especially inertia [4]. By solely considering
these varying dynamics in the definition of the point-to-point (PTP) profile, large energy savings can be achieved while maintaining
the desired motion time and using the same motor drive. Recent off-line motion profile optimization techniques, based on the genetic
algorithm (GA) prove that the root mean square (RMS) torque can be reduced by 38% [5] compared to standard motion profiles
such as the 1/3-profile. As proven in [6], reducing the RMS torque directly leads to energy savings. An important remark is that
these savings are perceptible every cycle and also prevents the motor from overheating, which is one of the main reasons for motor
failures [7].

Among other off-line optimizers found in literature like sequential quadratic programming in [8] reporting an energy reduction
of 9% and the pattern search algorithm in [6] mentioning a reduction of 25%, a drawback of these algorithms is that they are based
on a mathematical model of the machine of which the mechanical parameters have to be known in advance. Obtaining a realistic
model of a rod mechanism is not straightforward and requires advanced in-house knowledge. Because most machine builders already
obtained 3D CAD models of their machines during the design phase and assuming that there is a will to invest in additional software
licenses, an option is to use multi-body dynamics software. The computer model inherently contains accurate values for the mass
and inertia of the different motion bodies but assumes rigid and undamped system behavior. Stiffness and damping can be added
by the software user, but obtaining accurate values of these parameters is a challenge and requires measurements on the actual
machine. When an optimized motion profile is achieved based on a mathematical model that does not match the actual machine,
optimal efficiency is not guaranteed.

The same is true when the mechanical parameters change during operation of the machine. For example, the mass of the load
of a pick and place application is often unknown and varies due to process flexibility. Or in the case of a weaving process, the air
resistance at the fibers strongly depends on humidity and temperature and alters the load condition.

A first challenge is thus to ensure that the actual parameter values are captured during operation. A recently developed algorithm
in [9], based on the sliding discrete Fourier transformation (SDFT), experimentally proves that the inertia of a reciprocating
mechanism is accurately tracked at high speed. The mechanism is shown in Fig. 1 and is used as an industrial pick and place
unit. The literature review included in [9] states that none of the state-of-the-art estimation techniques are capable of accurately
estimating a parameter that varies that fast.

A second challenge is updating the motion profile on-line according to the estimated parameters. This requires fast evaluation
of the objective function. Heuristic algorithms like GA are not suited as for each optimization iteration the objective function must
be computed for a large number of possible solutions. This results in long calculation times from e.g. 8 min in [5] to 1 h in [10].
Gradient-based algorithms (GBA) are computationally more efficient because in each iteration, only the objective function and its
gradient are computed for 1 candidate. This is recently proven by comparing the achieved results from a novel GBA approach in [11]
with the GA approach in [5] for the forward motion profile of the same pick and place unit in Fig. 1. Not only the calculation time
is reduced to 70 ms while achieving the same torque reductions of 38%, but the GBA approach also requires only 2 optimization
variables while GA requires 12. Higher savings up to 45% with GBA are possible by increasing the number of optimization variables,
but this leads to a significantly higher calculation time which hampers on-line applicability. In addition, GBA is proven to be suited
for real-time implementation in [12] where the algorithm is implemented on a Speedgoat to optimize the velocity profile, resulting
in a calculation time of only 7 ms.

By tackling the mentioned challenges, this paper contributes towards optimal energy efficiency for reciprocating mechanisms by
combining the SDFT approach in [9] for inertia estimation and the GBA approach in [11] for on-line motion profile optimization.
An additional feature is that process changes or the use of new products is automatically considered because parameter changes are

Fig. 1. The industrial pick and place unit.
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captured on-line without needing a new off-line experiment. The proposed method is validated on the pick and place unit in Fig. 1.
The main improvements compared to previous work are:

• Enabling inertia estimation during PTP movement instead of constant speed.
• Enabling the selection of higher tracking frequency for faster and more accurate estimation.
• Enabling optimization of the backward motion profile and not only the forward one.
• Using GBA as an on-line motion profile optimizer in a closed-loop control system.

After this introduction, Section 2 discusses the representation of the actual machine as a two-mass system model, the definition
f its PTP-profile as a Chebychev polynomial, and how this enables the usage of a gradient-based optimization algorithm for
ptimization. In the next Section 3, the general principle of the SDFT-based estimator is explained, together with the selection of
he tracking frequency and control design for accurate estimation on the one hand and efficient position control on the other hand.
ext in Section 4, the proposed method is experimentally validated. The scope of the developed algorithms is further expanded

n Section 5 by considering a mass change during operation and by increasing the tracking frequency. Finally, a conclusion is
ormulated in Section 6.

. System and motion profile definition

.1. Two-mass system

Representing a rod mechanism as a two-mass system is a common simplification leading to an acceptable match between the
ystem model and the actual machine [4]. The model is shown in Fig. 2 and assumes that the driven rotor, represented with the
otor inertia 𝐽r , is connected with the load, represented with the load inertia 𝐽l, by a spring–damper coupling. The stiffness of the
pring is represented with 𝑘 and 𝑏 is the damping. The load is assumed to be the equivalent of all rigidly connected linkages. The
oad torque is represented with 𝑇l and is a result of gravitational and process forces acting on the linkages. This application only
nvolves the gravitational forces. Note that due to reducing the different masses and inertias of each linkage to one load coupled to
he rotor, both load inertia 𝐽l and load torque 𝑇l depend on the load position 𝜃l.

The motion equations are given in (1), with torque 𝑇 and angular velocity �̇� being the input and output of the system:

⎧

⎪

⎨

⎪

⎩

𝑇 − 𝑏(�̇� − �̇�l) − 𝑘(𝜃 − 𝜃l) = 𝐽r �̈�

𝑇l(𝜃l) + 𝑏(�̇� − �̇�l) + 𝑘(𝜃 − 𝜃l) =
1
2
d𝐽l(𝜃l)
d𝜃l

�̇�l
2 + 𝐽l(𝜃l)𝜃l

(1)

An equivalent transfer function 𝐻(𝑠) of the two-mass system is achieved after transforming the motion Eqs. (1) to the frequency
domain [4]:

𝐻(𝑠) =
𝐽l𝑠2 + 𝑏𝑠 + 𝑘

𝐽r𝐽l𝑠3 + (𝐽r + 𝐽l)𝑏𝑠2 + (𝐽r + 𝐽l)𝑘𝑠
(2)

The position-dependent load inertia 𝐽l in (2) is shown in Fig. 3 and will serve as a reference for validating the developed real-time
estimator. The reference profile is calculated analytically [9] from the kinetic energy of the mechanism with the mass and inertia
of each motion body known from the CAD model. The rotor inertia 𝐽r = 3200 kg⋅mm2 is found from a data-sheet of the motor. The
remaining parameters 𝑘 = 4220 Nm∕rad and 𝑏 = 0.4 Nm⋅s∕rad are estimated by fitting a measured frequency response, plotted in
Fig. 4, with the equivalent transfer function (2). The gain characteristic is measured using torque noise injection [4,13]. The fitting
procedure is illustrated in the figure by highlighting the influence of the stiffness 𝑘 and damping 𝑏 on the gain characteristic of

Fig. 2. Model of the two-mass system with variable inertia and load torque.
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Fig. 3. Position-dependent load inertia 𝐽l.

𝐻(𝑠). A change of 𝑘 results in a shift of both the resonance and anti-resonance peak and a change of 𝑏 affects the sharpness of the
peaks. In green, a frequency region is depicted where the gain of the two-mass system equals the gain of the equivalent one-mass
system [9], which assumes that the load is rigidly connected with the driven rotor. This means that for frequencies 𝑓 ≤ 20 Hz of
the torque input 𝑇 , the parameters 𝑘 and 𝑏 of the coupling do not influence the output velocity �̇�. This property enables model
reduction and is applied for construction of the objective function of the motion profile optimizer in Section 2.3 and for control
design in Section 3.2.

Since a frequency-domain representation 𝐻(𝑠) of the actual machine is available, the SDFT can be used for parameter tracking
at a well-selected frequency. The main approach and how to select the tracking frequency are covered in Section 3.

Fig. 4. Measured and theoretical gain characteristic at the position of maximum load inertia 𝐽l.

2.2. Motion profile

Reciprocating mechanisms repetitively move from position point A to B and back. Their movement, illustrated in Fig. 5, is
therefore called a PTP profile. At full operating speed, the observed pick and place unit moves from 𝜃A = 0◦ to 𝜃B = 𝛥𝜃 = 173.8◦
in a forward time of 𝑡AB = 73.75 ms and back to 𝜃A in a time of 𝑡BA = 57.5 ms. The rest times are 𝑡B = 93.75 ms and 𝑡A = 75 ms,
resulting in a cycle time of 𝛥𝑡 = 300 ms. The relevant position interval between 𝜃A and 𝜃B is depicted in gray in Fig. 3.

The definition of the forward motion profile and the accompanying objective function is further handled in this section. More
details for the case of the backward motion are briefly listed in Appendix B.

For mathematical efficient and robust optimization, Chebyshev polynomials of the first kind [14] are used to describe both the
forward and backward profile. These orthogonal polynomials 𝑇𝑛 of degree 𝑛 are defined on the interval 𝑥 ∈ [−1, 1] and are described
by the recurrence relation:

𝑇0(𝑥) = 1; 𝑇1(𝑥) = 𝑥; 𝑇𝑛+1(𝑥) = 2𝑥𝑇𝑛(𝑥) − 𝑇𝑛−1(𝑥) (3)

Fig. 5 however shows that the time 𝑡 of the forward profile is defined on the interval 𝑡 ∈ [0, 𝑡AB]. The time 𝑡 is thus scaled into the
interval 𝑥 ∈ [−1, 1]:

𝑥 = 2
𝑡AB − 0

(𝑡 − 0) − 1 = 2
𝑡AB

𝑡 − 1 (4)

imilarly, the position 𝜃 of the interval 𝜃 ∈ [0, 𝛥𝜃] is scaled to the interval 𝜙 ∈ [−1, 1]:

𝜙 = 2 (𝜃 − 0) − 1 = 2 𝜃 − 1 (5)
4

𝜃B − 0 𝛥𝜃
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Fig. 5. PTP profile of a reciprocating mechanism with the indication of the original 𝜃 and scaled 𝜙 forward profile from A to B.

The scaled profile 𝜙(𝑥) can now be described as the sum of a product of coefficients 𝑝𝑖 and Chebychev polynomials 𝑇𝑖(𝑥) in (3):

𝜙(𝑥) =
𝑛
∑

𝑖=0
𝑝𝑖𝑇𝑖(𝑥) 𝑥 ∈ [-1, 1] (6)

Previous research in [11] concludes that a degree of 𝑛 = 7 in (6) is a good trade-off between calculation time and reduction
of RMS-torque. Therefore, this paper continues with this 7th-degree Chebychev polynomial, hereafter called the cheb7 -profile. The
cheb7 -profile exists of coefficients 𝑝0,… , 𝑝7 of which their values determine how much each of the polynomials affect the final shape
of the motion profile. The values must take the motion constraints in points A and B into account. Besides the obvious fact that the
machine starts at A and ends at B, the velocity �̇� and acceleration �̈� are set to 0 in these points:

𝜙(−1) = −1 �̇�(−1) = 0 �̈�(−1) = 0
𝜙(1) = 1 �̇�(1) = 0 �̈�(1) = 0

(7)

Referring to (6), and by incorporating the constraints in (7), it is clear that the lower degree coefficients 𝑝0,… , 𝑝5 can be written as
a function of the remaining coefficients 𝑝6, 𝑝7:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑝5 = −5𝑝7 + 3∕128

𝑝4 = −6𝑝6
𝑝3 = 9𝑝7 − 25∕128

𝑝2 = 15𝑝6
𝑝1 = −5𝑝7 + 75∕64

𝑝0 = −10𝑝6

(8)

In other words, the coefficients 𝑝6, 𝑝7 are free to be optimized, while the motion constraints are met by using (8). The derivation of
the relation between 𝑝6, 𝑝7 and 𝑝0,… , 𝑝5 is given in Appendix A. Note that setting 𝑝6, 𝑝7 = 0 results in a non-optimized 5th-degree
Chebychev polynomial. This polynomial is further referred to as the cheb5-profile.

2.3. Objective function

Through the motion equations in (1), the torque 𝑇 can be calculated for any given motion profile 𝜃. Yet, accurate values of
the stiffness 𝑘 and damping 𝑏 of the equivalent spring–damper coupling must be obtained. However, as concluded with Fig. 4, this
complex and time-consuming task is avoided by keeping the frequency content of the torque 𝑇 in a region where the two-mass
system behaves as a one-mass system [9]. This system model assumes a rigidly connected inertial load 𝐽 = 𝐽r +𝐽l and thus excludes
the dynamics of the spring–damper coupling. Moreover, recent work [5] shows that reductions of the RMS-torque 𝑇RMS up to −38%
are possible by using this simplified model. Substitution of 𝜃 = 𝜃l in (1), leads to the motion equation of the one-mass system model:

𝑇 = 𝑇l(𝜃) +
1
2
d𝐽 (𝜃)
d𝜃

�̇�2 + 𝐽 (𝜃)�̈� (9)

Note that (9) is a non-linear second order differential equation with varying coefficients that depend on the position 𝜃. Solving the
quation numerically for achieving a minimum RMS-torque leads to a highly complex mathematical problem, which favors the use
f direct methods [15].

The accuracy of the one-mass system model is verified in Fig. 6 where the measured torque for the forward movement of an
rbitrary motion profile, the cheb5-profile in this case, is compared with the calculated torque according to (9). A clear correlation
s found, which means that the model is valid for minimizing the RMS-torque. In addition, both the calculated torque and load
osition 𝜃l according to the two-mass motion Eqs. (1) is plotted. Due to the small difference between the actual rotor position 𝜃
nd estimated load position 𝜃 , the torque according to the two-mass system is nearly equal to the torque according to the one-mass
5
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Fig. 6. Comparison of the calculated (9) and measured torque 𝑇 (bottom) for an arbitrary motion profile 𝜃 and the accompanying load position 𝜃l (top).

system. This confirms that model reduction is suited if the controller bandwidth is sufficiently low. The control design is further
discussed in Section 3.2.

After substituting the scaling laws (4) and (5) of respectively the time 𝑡 to 𝑥 and the position 𝜃 to 𝜙 in (9), the scaled torque
profile with retained [11] RMS-value is obtained:

𝑇 = 𝛥𝜃
𝑡AB2

(

d𝐽 (𝜙)
d𝜙

�̇�2 + 2𝐽 (𝜙)�̈�
)

(10)

The load torque 𝑇l in (9) is disregarded because it is negligible when the inertial forces are dominant at high speed.
By finally taking the RMS-value of (10), an analytical description of the objective function is obtained:

𝑇RMS =

√

1
2 ∫

1

−1
𝑇 2d𝑥 (11)

In short, the coefficients 𝑝6, 𝑝7 can be optimized with the objective to minimize 𝑇RMS. The objective function is graphically
represented in Fig. 7 for 𝑡AB = 73.75 ms and proves the effectiveness of choosing a gradient-based algorithm as the gradients indicate
a clear global optimum without any local optima.

Because there are no constraints, the Quasi-Newton method [11] is selected for on-line optimization. A condition for fast
evaluation of the objective function however is that the load inertia 𝐽l must be available as a continuous function, which is achieved
in Section 4.

Fig. 7. Objective function of the forward cheb7 -profile [11].

3. SDFT for inertia estimation

3.1. General principle

The general estimation principle, shown in Fig. 8, exists of two parts: calculating the modulus 𝑀 , also called the gain when
expressed in dB, at a specific frequency 𝑓 and converting this modulus to the load inertia 𝐽l. This frequency 𝑓 at which the system’s
response is calculated is further called the tracking frequency 𝑓 .
6
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Fig. 8. General scheme for estimating the load inertia using SDFT.

The first part is tracking the modulus real-time, for which the computationally efficient SDFT algorithm is of interest. At a
discrete time instance 𝑛, the algorithm uses Fourier analysis to determine the ℎth harmonic component 𝑋ℎ(𝑛) based on 𝑁 samples
f a measured signal 𝑥(𝑛):

𝑋ℎ(𝑛) = (𝑋ℎ(𝑛 − 1) + 𝑥(𝑛) − 𝑥(𝑛 −𝑁))𝑒𝑗ℎ
2𝜋
𝑁 (12)

The proof of (12) is found in [16,17] and its implementation is shown in Fig. 9. The observed signals are in this case the input signal,
torque 𝑇 , and output signal, velocity �̇�. For parameter estimation, only the response of the first harmonic (ℎ = 1) is of interest. The
window size 𝑁 is thus set to one period of the tracking frequency 𝑓 , with 𝑡s the sample time:

𝑁 = 1
𝑓𝑡s

(13)

By taking the magnitude of the Fourier components �̇�(𝑗𝜔) and 𝑇 (𝑗𝜔), the modulus 𝑀 of the system is found as:

𝑀 =
|�̇�|𝑓
|𝑇 |𝑓

(14)

For the second part, the relation between the mechanical parameters of the two-mass system and the modulus 𝑀 is considered.
The actual modulus 𝑀 is found by substitution of 𝑠 = 𝑗𝜔, with 𝜔 = 2𝜋𝑓 , in the transfer function (2) and calculating the magnitude:

𝑀 =

√

𝑏2𝜔2 + (𝐽l𝜔2 − 𝑘)2

(𝐽r𝐽l𝜔3 − 𝑘𝜔𝐽l − 𝑘𝜔𝐽r )2 + (𝑏𝜔2𝐽l + 𝑏𝜔2𝐽r )2
(15)

By re-writing (15), the estimated load inertia 𝐽l is found as:

𝐽l =

⎧

⎪

⎨

⎪

⎩

𝐽l1 =
𝐴+

√

𝐵
𝐶

𝐽l2 =
𝐴−

√

𝐵
𝐶

𝐴=(𝑘−𝑏2)𝑀2𝐽r𝜔3−(𝑀2𝐽r𝑘2+1)𝑘𝜔

𝐵=−𝑀4𝐽4
r 𝑏

2𝜔8+2𝑀2𝐽2
r 𝑏

2𝜔6+(𝑀2𝑏2−1)𝑏2𝜔4+2𝑀2𝑏2𝑘2𝜔2+𝑀2𝑘4

𝐶=𝑀2𝐽2
r 𝜔

5−(2𝑀2𝐽r𝑘−𝑀2𝑏2+1)𝜔3+𝑀2𝑘2𝜔

(16)

Note that the modulus 𝑀 , and thus the estimated inertia 𝐽l after conversion, is inherently delayed with 𝑁∕2 due to the lag of
he SDFT-algorithm [9]. The position 𝜃 is therefore also delayed with 𝑁∕2 so that the correct position-dependency is obtained. A
econd remark is that the conversion Eq. (16) consists of two solutions with a common numerator 𝐶 and root function 𝐵. Section 4

demonstrates how this is taken into account.

Fig. 9. Implementation of the SDFT algorithm [17].

3.2. Selection of the tracking frequency

For the selection of the tracking frequency, 3 arguments are considered, starting with the window size 𝑁 of SDFT. Every 𝑁
amples, an inertia estimate is obtained. As depicted in Fig. 3, the inertia is variable during this window which inherently results in
n averaging error. The smaller the window size 𝑁 , the smaller the difference 𝛥𝐽l and the lower this error. According to (13) this
eans that the tracking frequency 𝑓 should be selected as high as possible. On the other hand, the smaller 𝑁 , the less accurate a
7

ignal at 𝑓 is reconstructed using Fourier. According to the Nyquist–Shannon sampling theorem at least 𝑁 = 2 samples are required,
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but the measured gain in Fig. 4 shows that at frequencies from about 100 Hz the reconstruction starts getting problematic due to
the inevitable presence of noise. In short, the first guideline is to select 𝑓 ≤ 100 Hz. According to (13) with 𝑡s = 0.25 ms this means

windows size of 𝑁 ≥ 50.
A second argument is to select a frequency where the actual system can be represented by the same transfer function 𝐻(𝑠) (2) of

he equivalent two-mass system at all positions. Due to the varying inertia, the frequency regions where 𝐻(𝑠) is valid are dependent
n the load position. Previous research in [9] covers this and further limits the selection to 80 ≥ 𝑓 ≤ 100 Hz. As illustrated in Fig. 4,
n important remark is that the stiffness 𝑘 and damping 𝑏 strongly affect the gain in this frequency region. Because the values of 𝑘
nd 𝑏 are used for converting the measured gain to the estimated load inertia 𝐽l, this means that an inaccuracy on 𝑘 and 𝑏 results
n an estimation error on 𝐽l. This uncertainty is also handled in [9], concluding that rough guesses of 𝑘 and 𝑏 lead to an acceptable
ccuracy of the estimated load inertia profile.

The final argument for finer selection of 𝑓 is to consider the control design. The block diagram of the control scheme is shown
n Fig. 10, with the system 𝐻(𝑠) given in (2) for maximum load inertia, and the position controller 𝐶p and speed controller 𝐶s:

𝐶p = 𝐾pp 𝐶s = 𝐾ps(1 +𝐾is
1
𝑠
) (17)

Using Mason’s rule [18], three transfer functions are constructed:

𝐺1(𝑠) =
𝜃(𝑠)
𝜃∗(𝑠)

=
𝐶p𝐶s𝐻

(1 + 𝐶s𝐻)𝑠 + 𝐶p𝐶s𝐻

𝐺2(𝑠) =
�̇�(𝑠)
𝜃∗(𝑠)

=
𝐶p𝐶s𝐻𝑠

(1 + 𝐶s𝐻)𝑠 + 𝐶p𝐶s𝐻

𝐺3(𝑠) =
�̇�(𝑠)
𝑇inj(𝑠)

= 𝐻𝑠
(1 + 𝐶s𝐻)𝑠 + 𝐶p𝐶s𝐻

(18)

For accurate estimation, the control settings (𝐾pp = 20 1/s, 𝐾ps = 1.1 Nms/rad, 𝐾is = 50 1/s) are on the one hand tuned with
𝐺3(𝑠) for maximum disturbance transmission because the injected torque 𝑇inj = 𝐴 sin(2𝜋𝑓𝑡) must result in a high amplitude of both
the torque 𝑇 and speed �̇� at the tracking frequency 𝑓 . On the other hand, tuning with 𝐺2(𝑠) is needed because the influence of the
desired profile 𝜃∗ on the speed �̇� must be limited to make sure that the amplitude at the tracking frequency 𝑓 is strongly represented.

By assuming that both forward and backward motion profiles 𝜃∗ can be represented as a sum of sines of which the fundamental
one is half a sine wave, the frequency 𝑓PTP and amplitude 𝐴PTP can be related to their PTP time 𝑡PTP of either 𝑡AB or 𝑡BA and their
angular difference 𝛥𝜃:

𝑓PTP=̂
1

2𝑡PTP
𝐴PTP=̂

𝛥𝜃
2

(19)

Using (19), a guideline to maximize the ratio between the response of 𝑇inj on �̇� through 𝐺3(𝑠) and the response of 𝜃∗ on �̇�
hrough 𝐺2(𝑠) can be constructed. This ratio is here-after called the disturbance-to-position ratio (DPR). Through simulations with
he equivalent two-mass system model (1), it has been found that the DPR should at least be 0.05:

𝐴|𝐺3(𝑠)|𝑓
𝛥𝜃
2 |𝐺2(𝑠)|𝑓 PTP

≥ 0.05 (20)

The responses of (18) are plotted in Fig. 11 of which the ones related to the motion profile 𝜃∗ are plotted as a function of the
PTP-time 𝑡PTP by converting the frequency 𝑓PTP according to (19). The gain concerning the added torque is plotted as a function
of the frequency but spaced according to (13) because only a frequency 𝑓 can be selected that results in an integer value of the
window size 𝑁 . The bandwidth (−3 dB ≈ 0.7) of the closed-loop transfer function 𝐺1(𝑠) is depicted in red and is found to be 𝑓BW
= 3.6 Hz. According to (19), this corresponds to a PTP-time of 𝑡BW =̂ 140 ms.

A first observation, illustrated with the red box, is that the PTP-times during operation 𝑡AB = 73.75 ms (=̂ 6.8 Hz) and 𝑡BA =
57.5 ms (=̂ 8.7 Hz) are above the bandwidth of 𝑓BW = 3.6 Hz. Both the gain and phase of 𝐺1(𝑠) show that this means that the actual
position 𝜃 is not able to follow the desired position 𝜃∗. The entire position interval is thus not completed on time and as a result,
the inertia profile is not fully estimated. During estimation, the PTP-time is therefore slowed down with a factor of 10 where the
gain and phase are acceptable. Moreover, the speed �̇� to position 𝜃∗ gain is very high at e.g. 𝑡BA. This means that for obtaining the
desired DTP in (20) a very high amplitude 𝐴 of the added torque should be selected, which is not efficient. By slowing down with

Fig. 10. Block diagram of the control scheme.
8
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Fig. 11. Controller responses. Top to bottom: gain and phase of the desired 𝜃 to actual position 𝜃∗; gain of desired position 𝜃∗ to actual speed �̇�; gain of added
torque 𝑇inj to actual speed �̇�.

the factor of 10, this gain is strongly reduced from about 40 to 8. As clarified in Section 4, slowing down is not applied during
operation. Despite the low control bandwidth, accurate PTP-movement at operating speed is achieved by implementing speed - and
torque feedforward [5].

Next, the torque 𝑇inj to speed �̇� gain confirms that the controller transmits disturbances at most of the frequencies. At the lower
frequencies, the added torque is better transmitted, but these are not selected due to the mentioned averaging error. Selecting
𝑓 = 160 Hz or 𝑓 = 200 Hz is more feasible due to a higher gain of 𝐺3(𝑠), but these frequencies deliver inaccurate system responses
due the mentioned reconstruction problem. what remains is 𝑓 = 80 Hz with a gain of 0.08. By considering the guideline in (20),
the amplitude is set to 𝐴 = 5 Nm resulting in a DPR-ratio of 0.052. For comparison, a less feasible tracking frequency 𝑓 = 160 Hz is
selected with an amplitude of 𝐴 = 2.5 Nm which also satisfies the ratio (20). In short, the selected frequencies and amplitudes for
the next chapters are:

{

𝐴 = 5 Nm, 𝑓 = 80 Hz → 𝑁 = 50
𝐴 = 2.5 Nm, 𝑓 = 160 Hz → 𝑁 = 25

(21)

4. Implementation and validation

4.1. Principle and control sequence

By combining the GBA approach in Section 2 for optimization and the SDFT approach in Section 3 for estimation, on-line motion
profile optimization for reciprocating mechanisms is established. The general principle is shown in Fig. 12, of which the function
blocks are developed in Simulink and implemented on the real-time platform using Simulink code generation. Except for the profile
optimization block which requires to be compiled as a Matlab function. The real-time target is a Beckhoff-PLC, configured in torque
mode, with a sample time of 𝑡s = 0.25 ms. The figure shows that both the estimation and optimization blocks are either enabled
and/or triggered by the boolean 𝑥est , which is true during estimation. Further details on the working principle are given through
experimental validation in this section where the performance is evaluated with the selected tracking frequency of 𝑓 = 80 Hz.

For validation of the developed principle, the control sequence is set as depicted in Fig. 13. During the first PTP cycle 𝑖PTP =
1, the mechanism operates at full speed with the non-optimized Cheb5-profile. The second cycle 𝑖PTP = 2 is used for estimation of
the varying inertia profile and optimization of the motion profile accordingly. For accurate estimation and achieving a sufficiently
large DPR, the mechanism is slowed down during the backward BA-movement. Note that the backward movement is selected for
estimation, but the forward AB-movement could also be selected. The rest time in A is used for executing the optimization algorithm.
Next in the third cycle 𝑖PTP = 3, the mechanism operates back at full speed. Only now the motion profile is set to the optimized
Cheb7 -profile. The forward AB-movement and backward BA-movement of 𝑖PTP = 3 compared to 𝑖PTP = 1 is used for validation of
9

the optimized motion profile.
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Fig. 12. General principle of on-line motion profile optimization for reciprocating mechanisms.

Fig. 13. Control sequence for validating on-line motion profile optimization.

4.2. Motion profile, estimation signal and controller

For the definition of the PTP profile, the following booleans are defined: 𝑥AB is true during the forward movement from A to B,
B is true during the rest time in B, 𝑥BA is true during the backward movement from B to A, and 𝑥A is true during the rest time in
. The PTP profile 𝜃∗, plotted in Fig. 14 for the second PTP cycle 𝑖PTP = 2, is defined according to the motion features in Section 2:

𝜃∗ =

⎧

⎪

⎨

⎪

⎩

𝐶ℎ𝑒𝑏, if 𝑥AB = 1 or 𝑥BA = 1

𝜃A = 0, if 𝑥A = 1

𝜃B = 𝛥𝜃, if 𝑥B = 1

(22)

During the rest times, the position 𝜃∗ is set to 𝜃A = 0 in A and to 𝜃B = 𝛥𝜃 in B. During both forward and backward movement,
he position 𝜃∗ is defined according to the Chebychev polynomial in (6). For the non-optimized case, or when the inertia profile
s not yet estimated, the polynomial coefficients 𝑝0,… , 𝑝5 are found by setting 𝑝6, 𝑝7 = 0 in (8). What leaves is the non-optimized
heb5-profile. After estimation, the optimized coefficients 𝑝6, 𝑝7 are used, resulting in the optimized cheb7 -profile.

As mentioned in Section 2, the Chebychev polynomials are defined in fixed intervals according to (6), with 𝑥 ∈ [−1, 1] the
caled time and 𝜙 ∈ [−1, 1] the scaled position. This is taken into account by implementing the scaling laws for the time 𝑡 in (4)

and for the position 𝜃∗ in (5).
Fig. 14 shows both the input (torque 𝑇 ) and output (speed �̇�) signal at 𝑖PTP = 2. Due to the added torque which is activated when

𝑥est = 1, both signals contain oscillations of 1∕𝑓 . This is necessary for tracking the modulus 𝑀 at this selected frequency. Note that
he amplitude of these oscillations is strongly reduced in the actual position 𝜃 and therefore does not cause additional estimation
rrors.

During operation (𝑥est = 0), both speed - and torque feedforward [5] are activated in the controller for achieving a low tracking
rror at full operating speed. The forward part (𝑥AB = 1) in Fig. 14 confirms the effectiveness of this smart feedforward structure
s no residual vibrations occur.

During estimation (𝑥est = 1), the feedforward is deactivated so that the disturbance transmitting behavior of the controller is
aintained. As a result, it takes some settling time 𝑡set to reach the end position B. The end of the estimation interval (𝑥est = 1) is

defined accordingly. Also, note that 𝑥est starts one SDFT period 1∕𝑓 before 𝑥BA. This is to make sure that the SDFT-window is filled
ith relevant data before the backward motion starts.
10
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Fig. 14. Desired 𝜃∗ and actual position 𝜃, actual speed �̇� and motor torque 𝑇 at 𝑖PTP = 2 with an injected sine wave of 𝑓 = 80 Hz and 𝐴 = 5 Nm. The estimation
interval (𝑥est = 1) is depicted in green.

4.3. Solution switching

As clarified in Section 3, the SDFT-algorithm tracks the modulus 𝑀 at the tracking frequency 𝑓 . The conversion (16) from 𝑀 to
an inertia estimate 𝐽l however consists of two solutions 𝐽l1, 𝐽l2, which are plotted in Fig. 15 for 𝑓 = 80 Hz and 𝑓 = 160 Hz. In the
case of 𝑓 = 80 Hz, 𝐽l2 does not exist in the relevant domain of the load inertia of the system, which means that the first solution
𝐽l1 is always the correct one. In the other case of 𝑓 = 160 Hz, both solutions exist as depicted for 𝑀 = 0.2 for example. Only one is
correct, requiring the implementation of a selection algorithm. The plot of 𝑓 = 160 Hz shows a clear minimum where the solution
switches. Or in other words, the solution switches when the slope crosses zero. Solving 𝜕𝑀∕𝜕𝐽l = 0 for 𝐽l leads to the switching
function 𝐽ls:

𝐽ls =
𝐴 +𝐷

√

𝐵
𝐶

𝐴=−2𝜔2+𝑏2𝜔2+𝑘2

𝐷=𝑏2𝜔2+𝑘2

𝐵=4𝐽2
r 𝑏

2𝜔6+𝑏4𝜔4+2𝑏2𝑘2𝜔2+𝑘4

𝐶=2𝜔2(𝐽r𝑏2𝜔4−𝐽r𝑘2𝜔2+𝑏2𝑘𝜔2+𝑘3)

(23)

ubstitution of (23) in the modulus function (15), leads to the switching function 𝑀s. The switching point (𝐽ls;𝑀s) is depicted in
ig. 15. How the switching algorithm is implemented in the case of 𝑓 = 160 Hz is explained in Section 5.

In the case of 𝑓 = 80 Hz, Fig. 16 confirms that no switching occurs as the measured modulus 𝑀 never crosses the switching value
s. As a result, the first solution 𝐽l1 is selected (𝑥sel = 0 in the general scheme 12) as the discrete estimate 𝐽l(𝑛) of the inertia. The

igure further shows that the selection algorithm takes into account that during the first SDFT-window, the modulus 𝑀 is inaccurate.
uring the first two windows, a boolean 𝑥I is set to true and cancels the inertia estimates by returning NaN (Not a number). What

eaves is a clear agreement between the discrete estimates 𝐽l(𝑛) and the true inertia 𝐽l.

Fig. 15. Modulus 𝑀 as a function of load inertia 𝐽l according to (15) for 𝑓 = 80 Hz and 𝑓 = 160 Hz.
11
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Fig. 16. Obtaining a discrete inertia estimate during the estimation interval (𝑖PTP = 2 & 𝑥est = 1). Top to bottom: modulus 𝑀 and switching value 𝑀s; double
solutions 𝐽l1, 𝐽l2; selected inertia estimate 𝐽l(𝑛).

4.4. Recursive polynomial fitting

Using the discrete estimates 𝐽l(𝑛) of the inertia for solving the objective function (11) in Section 2 can lead to unfeasible results
due to the noise present in the signal. More accurate and faster evaluation is possible with a continuous function of the inertia profile.
This function is obtained by fitting the discrete estimates 𝐽l(𝑛) with a 5th-degree polynomial 𝐽l(𝜙) with respect to the shifted and
caled (see (5)) position 𝜙:

𝐽l(𝜙) = 𝑎0 + 𝑎1𝜙 + 𝑎2𝜙
2 + 𝑎3𝜙

3 + 𝑎4𝜙
4 + 𝑎5𝜙

5 (24)

The degree of 5 is chosen from a trade-off between computational efficiency and accuracy. By re-writing (24), it is clear that the
recursive least-squares (RLS) algorithm is suited for obtaining 𝐽l(𝜙):

𝐽l(𝜙) = 𝜑𝑇𝛩 𝜑 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜙5

𝜙4

𝜙3

𝜙2

𝜙
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝛩 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑎5
𝑎4
𝑎3
𝑎2
𝑎1
𝑎0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(25)

In (25), 𝜑 is the vector of regressors, 𝛩 is the parameter vector, and 𝐽l(𝜙) is the estimated output of the general linear regression
odel [19]. The parameters 𝛩 are estimated recursively with the objective to minimize the error between the discrete output 𝐽l(𝑛)

nd the estimated output 𝐽l(𝜙). The most important setting of the RLS algorithm is the forgetting factor. Setting 𝜆 = 1 means that
ll data of the true output is equally important and setting 𝜆 < 1 implies that past data is less significant. Because the fitting is only
elevant inside the estimation interval (𝑥est = 1) which mainly consists of the backward motion with 𝑁BA samples, the forgetting
actor 𝜆 is set to this interval [20]:

𝜆 = 1 − 1
𝑁BA

𝑁BA =
10𝑡BA
𝑡s

(26)

As shown in Fig. 17, the coefficients [𝑎0,… , 𝑎5]n converge towards their final values [𝑎0,… , 𝑎5] at the end of the backward
motion. The initial values, at the first cycle 𝑖PTP = 1 are set to [𝑎0,… , 𝑎5] = 0, which means that no initial guess is necessary. From
the second cycle 𝑖PTP ≥ 2, the final values [𝑎0,… , 𝑎5] of the previous cycle are set to the new initial values of the next cycle.

What cannot be seen in the figure but is indicated in the general scheme in Fig. 12, is that the samples used for fitting are
deleted at every negative flank of 𝑥est . This prevents samples of a previous cycle from affecting the estimated inertia polynomial of
the current cycle. Through this reset, the estimation algorithm can capture a change of inertia from the first cycle after the change
occurs. This benefit is demonstrated in Section 5.

After substitution of the coefficients [𝑎0,… , 𝑎5] in (24) and re-scaling the position from 𝜙 to 𝜃 (see (5)), the estimated continuous
inertia profile 𝐽l(𝜃) is finally obtained. By comparing with the true inertia 𝐽l in Fig. 18, the performance of the fitting algorithm
is evaluated. A clear agreement with an RMS-error 𝜖 of about 0.03 is found, but a first observation is that the rising flank from B
to A is less accurate than the falling flank. This is an unavoidable consequence of the real-time nature of the estimator. Due to the
forgetting factor 𝜆, the oldest samples which are in this case the ones at the rising flank from B to A, are less important than the
12

newest samples.
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Fig. 17. Obtaining a continuous inertia estimate during the estimation interval (𝑖PTP = 2 & 𝑥est = 1). Polynomial coefficients [𝑎0 ,… , 𝑎5] (top); discrete 𝐽l(𝑛) and
continuous inertia 𝐽l(𝑡) estimate (bottom).

Fig. 18. Estimated inertia profile 𝐽l(𝜃) compared with the true inertia 𝐽l.

4.5. Updating the motion profile

Since a continuous function 𝐽l(𝜃) of the inertia profile is estimated in 𝑖PTP = 2, the on-line motion profile optimizer can be
executed. At the negative flank of 𝑥est , the objective function for the forward movement (11) and backward movement (38) is
solved according to the coefficients [𝑎0,… , 𝑎5] of the estimated inertia polynomial. As depicted in the control sequence in Fig. 13,
the rest time 𝑡A = 75 ms after estimation is used as calculation time for the optimizer.

In the next cycle 𝑖PTP = 3, both forward and backward motion profiles are defined as the optimized Cheb7 -profile with optimized
values 𝑝6, 𝑝7. A comparison is made in Fig. 19, where both the torque and motion profiles during the optimized cycle 𝑖PTP = 3 and
the non-optimized cycle 𝑖PTP = 1 (𝑝6, 𝑝7 = 0) are plotted together. A clear reduction of the motor torque 𝑇 is achieved. For instance,
during the forward movement the RMS-value 𝑇RMS is reduced from 21.3 Nm to 13.8 Nm and the maximum value 𝑇max from 38.1 Nm
o 21 Nm. And during backward movement, motor saturation is avoided. Table 1 summarizes and compares the reductions with
he off-line optimized forward profile in [11]. The backward profile is not considered in [11].

Based on the table, the proposed on-line motion profile optimization technique is proven to be effective and a valid alternative
or off-line techniques where the inertia profile is required to be known in advance. The main added value however is that the
n-line approach can cope with changing inertia due to process flexibility, which is demonstrated in Section 5.

Fig. 19 furthermore confirms that the controller is well designed because at the full operating speed of 0.3 s per cycle, the
racking error 𝜃∗ − 𝜃 is small. This is mainly thanks to the smart feedforward structures in [5] and avoids residual vibrations.

Table 1
Measured torque reductions.

on-line off-line [11]

A to B B to A A to B B to A

𝑇RMS −35.2% −28.2% −38.6% /
𝑇max −44.9% −16.1% −43.6% /
13
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Fig. 19. Top: position setpoint 𝜃∗ at 𝑖PTP = 1 and 2; bottom: motor torque 𝑇 at 𝑖PTP = 1 and 2.

. Additional features

.1. Doubling the tracking frequency

The performance of the developed algorithms is further validated by doubling the tracking frequency to 𝑓 = 160 Hz. According
o the guidelines in Section 3, selecting 𝑓 = 160 Hz has two advantages: a smaller window size 𝑁 results in a lower averaging error;
higher disturbance gain requires a lower amplitude 𝐴 = 2.5 Nm of the injected torque for respecting the minimum DPR-ratio of
.05. The main disadvantage however becomes clear with the experiment in Fig. 20. The lower 𝑁 , the less accurate the fundamental
ignal is reproduced using Fourier, resulting in an inaccurate modulus 𝑀 . This is also clearly visible in the off-line determined gain
haracteristic in Fig. 4. As a consequence, the solutions 𝐽l1 and 𝐽l2 are not reliable. Valid inertia estimates are however obtained
t the positions of low inertia where the influence of noise is small [4], resulting in an accurate modulus 𝑀 . Yet, the full inertia
rofile must be obtained. In other words, the real-time inertia estimator fails when the guideline of selecting a window size 𝑁 ≥
0 is not respected. The solution is to lower the sample time 𝑡s and thus achieve more samples in the SDFT-window 𝑁 , but the
eal-time platform is already configured at its limit of 𝑡s = 0.25 ms.

Despite the limit of the real-time target, the performance of the real-time estimator at doubled frequency is still demonstrated
y using the equivalent two-mass system model instead of the actual machine. The PLC-block in Fig. 12 is now replaced with the
otion equations in (1) and the tracking frequency is set to 𝑓 = 160 Hz with an amplitude of 𝐴 = 2.5 Nm. The principle is shown

n Fig. 21 and is very similar to 𝑓 = 80 Hz, except solution switching between the discrete estimates 𝐽l1 and 𝐽l2 is now required.
The basic concept is to switch from solution when the measured modulus 𝑀 equals the switching value 𝑀s. Fig. 21 illustrates

his, but the zoom-in plot reveals that 𝑀 equals 𝑀s multiple times. Jitter is avoided by defining a threshold boolean 𝑥th, which is
rue whenever 𝑀avg ≤ 𝑀th. Wherein 𝑀avg is the moving average [21] with window size 𝑁 and 𝑀th = 𝑝𝑀 is the threshold value. In
his case, 𝑝 = 2.2 is found to be feasible through try and error. The selection boolean 𝑥sel becomes true at a falling edge of 𝑥th and

Fig. 20. Obtaining a discrete inertia estimate in the case of 𝑓 = 160 Hz (𝑖PTP = 2 & 𝑥est = 1). Modulus 𝑀 (top) and double solutions 𝐽l1, 𝐽l2 (bottom).
14
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Fig. 21. Inertia estimation during 𝑖PTP = 2 with 𝑓 = 160 Hz.

ack to false at a rising edge of 𝑥th. In short, the selection algorithm is defined as:

𝐽l =

⎧

⎪

⎨

⎪

⎩

𝐽l1, if 𝑥sel = 0
𝐽l2, if 𝑥sel = 1
∄, if 𝑥th = 1

(27)

Note that when 𝑥th = 1, the estimate is defined as nonexistent by assigning NaN (not a number). Fig. 21 confirms that the
election algorithm properly selects the correct estimates of 𝐽l1 and 𝐽l1. Furthermore, the fitting algorithm successfully cancels the
alse estimates by only using the samples of 𝐽l(𝑛) when 𝑥th = 0. The polynomial coefficients [𝑎0,… , 𝑎5]n are held constant when 𝑥th

1. In short, the simulations prove that the real-time estimation algorithm is also applicable for higher frequencies where solution
witching is necessary. By comparing with the measurements in Fig. 20, it can be concluded that in noise-free conditions the SDFT is
valid approach for real-time inertia estimation. When noise is present, the SDFT-window 𝑁 must be sufficiently large for canceling

he noise.
The estimation accuracy is further investigated with Fig. 22 by comparing the discrete inertia estimates 𝐽l(𝑛) at both 𝑓 = 80 Hz

𝑁 = 50) and 𝑓 = 160 Hz (𝑁 = 25). The zoom-in plot, located at a high slope of the inertia 𝐽l, clarifies the influence of the window
ize 𝑁 on the averaging error. The larger 𝑁 , the larger the difference 𝛥𝐽l and the higher the error. The consequence is that larger
scillations occur around the true inertia in the case of 𝑓 = 80 Hz. The advantage of choosing the doubled frequency 𝑓 = 160 Hz
s however limited to the regions with a high inertia slope because, at nearly constant inertia slopes, the oscillations are rather the
ame as the window size 𝑁 does not affect the difference 𝛥𝐽l.

Fig. 22. Influence of the window size 𝑁 on the averaging error.
15
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Moreover, Fig. 23 shows that after polynomial fitting, the estimated inertia profile 𝐽l(𝜃) is equally accurate in both cases. In other
ords, the oscillations due to the averaging error are successfully canceled. Based on these simulations, the argument for selecting

he tracking frequency as high as possible for limiting the averaging error thus expires if the objective is to use the inertia estimate
or on-line motion profile optimization. The argument of the lower amplitude 𝐴 = 2.5 Nm at 160 Hz instead of 𝐴 = 5 Nm at 80 Hz
f the injected torque for respecting the minimum DPR of 0.05 however remains.

In summary, the developed real-time inertia estimation algorithm is proven to be suited for higher frequencies where solution
witching is required. Doubling the tracking frequency results in more accurate discrete inertia estimates. But after polynomial
itting, the obtained inertia profile is equally accurate as at lower frequencies.

Additionally, the estimated inertia profile 𝐽l(𝜃) at 80 Hz in Fig. 23 obtained through simulations is compared with the estimated
rofile obtained through experimental validation on the actual machine in Fig. 18. As expected, the simulations provide a higher
ccuracy. The main reason is the inevitable presence of noise in the actual system. Next to that, the mismatch between the observed
ne-mass system model and the actual system is larger than in the case of the two-mass system used for simulation.

Fig. 23. Estimated inertia profile 𝐽l(𝜃) in the case of both 𝑓 = 80 Hz and 𝑓 = 160 Hz.

5.2. Mass change during operation

The use of the two-mass system model also enables to mimic a mass change during operation because the actual machine not
yet allows objects to be picked. The control sequence is slightly changed to the one depicted in Fig. 24. A simulation is performed
consisting of three PTP cycles. In the first cycle 𝑖PTP = 1, the forward profile moves according to the non-optimized cheb5-profile
because the inertia is not yet known. As plotted in Fig. 25, the coefficients 𝑝6, 𝑝7 are set to 0 at 𝑖PTP = 1. In the same cycle, the
inertia 𝐽l(𝜃) is estimated during the backward movement and the objective function is solved accordingly for achieving the optimized
coefficients 𝑝6, 𝑝7. The forward profile in the second cycle 𝑖PTP = 2 is then set to the optimized cheb7 -profile with values of 𝑝6, 𝑝7
plotted in Fig. 25. Just after the forward movement of 𝑖PTP = 2, a mass change occurs as depicted with a green arrow in Fig. 24. At
this moment, the mass of the sledge, depicted in Figs. 1 and 2, of the pick and place unit is increased by 20%. In order to capture
this mass change, which leads to an inertia change, a new estimation 𝐽l(𝜃) occurs during the backward movement. The objective
function is again solved, resulting in a new set of optimized coefficients 𝑝6, 𝑝7. The motion profiles in the third cycle 𝑖PTP = 3 are
then updated accordingly.

The achieved torque reductions during both the forward movement of the second cycle 𝑖PTP = 2 (before mass change) and during
the forward movement of the third cycle 𝑖PTP = 3 (after mass change) are compared in Fig. 25. The plot of the percentage reductions
𝛿 confirms that because the inertia estimator can accurately handle mass changes, the optimization algorithm guarantees optimal
performance. Similar reductions of 𝛿RMS = −39% and 𝛿max = −46% as depicted in Fig. 19 are achieved from 𝑖PTP = 1 to 2. And
from 𝑖PTP = 2 to 3, or after the change of mass, the torque reductions 𝛿 are similar. The reductions even increase slightly which is
expected as the higher the inertia variation, the higher the optimization potential.

Fig. 24. Control sequence for validating on-line motion profile optimization including a mass change.
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Fig. 25. Left: estimated profiles 𝐽l(𝜃) for a mass change between 𝑖PTP = 1 & 2. Right: optimized coefficients 𝑝6 , 𝑝7 and reduction 𝛿 of RMS - and maximum
torque during 𝑖PTP = 1–3.

6. Conclusion

This paper presented an on-line approach for motion profile optimization applied to multi-body mechanisms, driven as a PTP
application, which are inherently characterized by rapidly varying load inertia. Through experimental validation on an industrial
pick and place unit, the combination of using the sliding discrete Fourier transform for real-time estimation and a Gradient-based
algorithm for on-line optimization is proven to be effective and a valid alternative for off-line approaches.

The developed real-time estimation algorithm can accurately estimate a continuous function of the varying load inertia during
either the forward or backward movement. Additionally, the algorithm can successfully capture mass and/or inertia changes. This
is demonstrated by injecting an added mass that corresponds to an object that is picked by the pick and place unit.

Tuning rules for the tracking frequency and amplitude of the estimation signal are discussed and are mainly based on the
disturbance transmission of the controller. A drawback however is that the PTP motion must be slowed down, which hampers
estimation at full operating speed. This is however not an issue in practice as the optimization routine can either be executed at
fixed time stamps or when an increase of e.g. the RMS-value of the motor torque is detected.

Regarding the optimization part, the gradient-based approach with the motion profile described as a Chebychev polynomial is
found to be a significant progress in terms of calculation time, enabling on-line optimization. The achieved torque reductions are
comparable with off-line algorithms and due to the ability to capture changing mass real-time, the on-line approach is certainly an
added value for maintaining optimal performance.

Additionally, the developed estimation and optimization algorithms are based on input/output-data which is already available
in the controller, requiring no additional hardware.
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Appendix A. Relation of coefficients of the forward motion profile

The Cheb7 -profile is described according to (6) with 𝑛 = 7:

𝜙 = 𝑝0𝑇0 + 𝑝1𝑇1 + 𝑝2𝑇2 + 𝑝3𝑇3 + 𝑝4𝑇4 + 𝑝5𝑇5 + 𝑝6𝑇6 + 𝑝7𝑇7 (28)

The first 8 Chebychev polynomials 𝑇0,… , 𝑇7 of the first kind are defined according to (3) [14]:

𝑇0 = 1

𝑇1 = 𝑥

𝑇2 = 2𝑥2 − 1

𝑇3 = 4𝑥3 − 3𝑥

𝑇4 = 8𝑥4 − 8𝑥2 + 1

𝑇5 = 16𝑥5 − 20𝑥3 + 5𝑥

𝑇6 = 32𝑥6 − 48𝑥4 + 18𝑥2 − 1
7 5 3

(29)
17
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Substituting (29) in (28) and rearranging leads to:

𝜙 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

64𝑝7
32𝑝6

−112𝑝7 + 16𝑝5
−48𝑝6 + 8𝑝4

56𝑝7 − 20𝑝5 + 4𝑝3
18𝑝6 − 8𝑝4 + 2𝑝2

−7𝑝7 + 5𝑝5 − 3𝑝3 + 𝑝1
−𝑝6 + 𝑝4 − 𝑝2 + 𝑝0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑥7

𝑥6

𝑥5

𝑥4

𝑥3

𝑥2

𝑥
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑇

(30)

Differentiation of the motion profile 𝜙 in (30) with respect to 𝑥 leads to the velocity �̇� and acceleration �̈�:

�̇� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

448𝑝7
192𝑝6

−560𝑝7 + 80𝑝5
−192𝑝6 + 32𝑝4

168𝑝7 − 60𝑝5 + 12𝑝3
36𝑝6 − 16𝑝4 + 4𝑝2

−7𝑝7 + 5𝑝5 − 3𝑝3 + 𝑝1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑥6

𝑥5

𝑥4

𝑥3

𝑥2

𝑥
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑇

(31)

�̈� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2688𝑝7
960𝑝6

−2240𝑝7 + 320𝑝5
−576𝑝6 + 96𝑝4

336𝑝7 − 120𝑝5 + 24𝑝3
36𝑝6 − 16𝑝4 + 4𝑝2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑥5

𝑥4

𝑥3

𝑥2

𝑥
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑇

(32)

From this step, either the forward or backward movement is considered for determination of the coefficients of the Cheb7 -profile.
In the case of the forward profile, the motion constraints (7) are substituted in (30), (31) and (32), leading to a set of 6 equations:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−1 = −𝑝7 + 𝑝6 − 𝑝5 + 𝑝4 − 𝑝3 + 𝑝2 − 𝑝1 + 𝑝0
1 = 𝑝7 + 𝑝6 + 𝑝5 + 𝑝4 + 𝑝3 + 𝑝2 + 𝑝1 + 𝑝0
0 = 49𝑝7 − 36𝑝6 + 25𝑝5 − 16𝑝4 + 9𝑝3 − 4𝑝2 + 𝑝1
0 = 49𝑝7 + 36𝑝6 + 25𝑝5 + 16𝑝4 + 9𝑝3 + 4𝑝2 + 𝑝1
0 = −784𝑝7 + 420𝑝6 − 200𝑝5 + 80𝑝4 − 24𝑝3 + 4𝑝2
0 = 784𝑝7 + 420𝑝6 + 200𝑝5 + 80𝑝4 + 24𝑝3 + 4𝑝2

(33)

The lower degree coefficients 𝑝0,… , 𝑝5 in (33) are considered to be the unknowns variables and the optimizable coefficients
𝑝6, 𝑝7 are considered to be the known variables. After rewriting of (33) a set of 6 equations with 6 unknowns remains:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −1 1 −1 1 −1
1 1 1 1 1 1
25 −16 9 −4 1 0
25 16 9 4 1 0
−50 20 −6 1 0 0
50 20 6 1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑝5
𝑝4
𝑝3
𝑝2
𝑝1
𝑝0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 − 𝑝7 + 𝑝6
1 − 𝑝7 − 𝑝6

−49𝑝7 + 36𝑝6
−49𝑝7 − 36𝑝6
196𝑝7 − 105𝑝6
−196𝑝7 − 105𝑝6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(34)

Solving the set of linear equations in (34) results in the relation between 𝑝6, 𝑝7 and 𝑝0,… , 𝑝5, given in (8).

Appendix B. Motion profile and objective function during backward movement

Brief summary:

• Scaling 𝑥 → 𝑡 and 𝜙 → 𝜃:

𝑥 = 2
𝑡BA

𝑡 − 1 𝜙 = 2
𝛥𝜃

𝜃 − 1 (35)

• Motion constraints in A and B:

𝜙(−1) = 1 �̇�(−1) = 0 �̈�(−1) = 0 (36)
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𝜙(1) = −1 �̇�(1) = 0 �̈�(1) = 0
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• Relation of coefficients:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑝5 = −5𝑝7 − 3∕128

𝑝4 = −6𝑝6
𝑝3 = 9𝑝7 + 25∕128

𝑝2 = 15𝑝6
𝑝1 = −5𝑝7 − 75∕64

𝑝0 = −10𝑝6

(37)

• Objective function:

𝑇 = 𝛥𝜃
𝑡BA2

(

d𝐽
d𝜙

�̇�2 + 2𝐽�̈�
)

𝑇RMS =

√

1
2 ∫

1

−1
𝑇 2d𝑥 (38)
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