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ABSTRACT
Position-controlled systems driving repetitive tasks are of significant
importance in industrial machinery. The electric actuators used in these
systems are responsible for a large part of the global energy consumption,
indicating that major savings can be made in this field. In this context,
motion profile optimization is a very cost-effective solution as it allows for
more energy-efficient machines without additional hardware investments
or adaptions. In particular, mono-actuated mechanisms with position-
dependent system properties have received considerable attention in lit-
erature. However, the current state-of-the-art methods often use
unbounded design parameters to describe the motion profile. This both
increases the computational complexity and hampers the search for a glo-
bal optimum. In this paper, Chebyshev polynomials are used to describe
the motion profile. Moreover, the exact bounds on the Chebyshev design
parameters are derived. This both seriously reduces the computational
complexity and limits the design space, allowing the application of a glo-
bal optimizer such as the genetic algorithm. Experiments validate the
added value of the chosen approach. In this study, it is found that the
energy consumption can be reduced by 62.9% compared to a standard
reference motion profile.
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1. Introduction

In the last decades, economic considerations and stricter government regulations have driven
engineers to come up with new techniques to reduce the energy consumption of industrial
machinery. Statistics indicate that electric motors are generally responsible for about 2/3 of the
industrial electricity consumption, which indicates that major savings are to be made in this field
(Bo, 2008).

In this context, several technologies and methods have been developed to reduce the electrical
energy consumption of mechatronic systems. For instance, (Glodde and Afrough, 2014) has dem-
onstrated that replacing machinery with existing well-established energy-efficient technologies

CONTACT Nick Van Oosterwyck nick.vanoosterwyck@uantwerpen.be Department of Electromechanics, Cosys-Lab,
University of Antwerp, Antwerp, Belgium.
#The author contributed equally.
Communicated by Bogdan Gavrea.
� 2022 Taylor & Francis Group, LLC

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES
https://doi.org/10.1080/15397734.2022.2106241

http://crossmark.crossref.org/dialog/?doi=10.1080/15397734.2022.2106241&domain=pdf&date_stamp=2022-08-04
https://doi.org/10.1080/15397734.2022.2106241
http://www.tandfonline.com


results in savings of approximately 57%. Nevertheless, the acquisition of new equipment entails
certain costs, which hampers the wide spread of these innovations.

Motion profile optimization on the other hand, is a cost-effective alternative which can be
implemented without additional investments in hardware. It starts from the idea that in many
industrial applications, only part of the motion is constrained by the process requirements.
Hence, an optimization potential rises in the non-constrained part of the position function hðtÞ,
in between the start hðtAÞ ¼ hA and endpoint hðtBÞ ¼ hB of the point-to-point (PTP) motion
(Figure 1). Moreover, since many industrial applications involve repetitive movements, the
motion profile optimization effect will be perceptible every machine cycle, thus, making it an
indispensable step in modern energy-efficient machine design. Therefore, in this paper, a motion
profile optimization approach is presented which considers the motion profile hðtÞ as a design
variable in order to minimize the root-mean-square torque srms and associated energy consump-
tion E, while taking into account the motion requirement constraints of a rest-to-rest motion.

In the past literature, several motion profile optimization techniques have been proposed for
multiple applications. An overview of possible approaches is covered in (Carabin et al., 2017) and
(Rao, 2014). In general, the current techniques can be classified based on application type, system
property identification, optimization algorithm and motion profile function hðtÞ:

As for the application type, a vast amount of research is focused on the optimization of con-
ventional industrial robots (IRs) such as a 6-DOF serial robotic arm. For example, recent litera-
ture (Wu et al., 2022) proved that asymmetric jerk profiles can be used as an effective tool for
the trajectories planning of IRs. Moreover, (Gadaleta et al., 2019) presented an optimization
approach which interfaces with current robot offline programming tools used in industrial practi-
ces. However, these type of robots are specifically designed to work in flexible production envi-
ronments and are, due to the 6 axis drive system mass, not suitable for those manufacturing
environments where very high dynamics and accuracy are of utmost importance.

Therefore, lots of mechatronic systems are designed as rod mechanisms with a dedicated actu-
ator. Given the tendency to evolve from a monoactuator driving all machine components toward
dedicated positioners for each machine movement (Berselli et al., 2016), it is evident that one
machine can contain numerous motion profile optimization opportunities where each axis is opti-
mized independently. In (Richiedei and Trevisani, 2016), various motion profiles were compared
for mechanical systems with constant load parameters such as the inertia J. In (Carabin and
Vidoni, 2021), an analytic methodology is is developed for 1-DOF systems moving a constant
inertia load. However, as indicated in literature (Pellicciari, Berselli, and Balugani, 2015), it is
essential to consider varying loads to cover the majority of machine applications, which is also
the focus of the present study.

For what concerns the system property identification approach, one can distinguish either ana-
lytic, CAD-based or online approaches. Analytic identification used in (Hsu et al., 2014) and (Ha
et al., 2006) applies Hamilton’s principle and Lagrange multipliers to obtain the differential-alge-
braic equations of the system. In (Sollmann et al., 2010), a method of virtual work is described to
obtain the system matrix while (Vanbecelaere et al., 2020) determines the inertia profile using the
method of kinetic energy. In (Brancati et al., 2007), analytic equations were derived for a two-
link flexible manipulator. However, these analytic approaches are cumbersome, complex, error-
prone, and are not easily applicable in industry. Especially given the trend indicated in (Walsch

Figure 1. Motion profile of a PTP movement with constraints hA, hB, tA and tB.
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et al., 2014) that there is a demand for methods that take into account the ease of
implementation.

Fortunately, machine builders often already design their machines in 3D CAD multibody soft-
ware, which can be used to extract crucial information. Hence, in (Van Oosterwyck et al., 2019), the
authors of this paper describe a technique to derive the position dependency of critical parameters
inertia JðhÞ and load torque slðhÞ, based on only three CAD motion simulations. The latter is also
utilized in this paper. Similarly, if no CAD data is available, one can resort to online estimation tech-
niques as described in (Vanbecelaere et al., 2022) and (Delchev and Zahariev, 2008).

As for optimization algorithms, the motion profile optimization problem can be regarded as an
optimal control problem where the goal is not to determine an optimal control law, but instead,
the aim is to optimize the path of the state, being the design parameter, to minimize the torque
input which is this case is the objective. If optimal control problems are considered, several
approaches are possible: dynamic programming, indirect methods and direct methods (Diehl
et al., 2006).

On the one hand, dynamic programming can be used to solve unconstrained low-dimensional
problems, but it does not scale well to high-dimensional systems and is computationally expensive
due to the curse of dimensionality (Kelly, 2017).

On the other hand, (Park, 1996) and (Shiller, 1996) use an indirect approach such as
Pontryagin’s Maximum Principle to obtain the best possible control. However, this method tends
to be abandoned recently (Chettibi et al., 2004) due to the difficulties of incorporating constraints
and the fact that the underlying differential equations are often difficult to solve due to strong
nonlinearity (Diehl et al., 2006).

Finally, direct approaches recast the optimization into a nonlinear programming problem
(NLP), which can be solved with various numerical methods. In particular, (Gasparetto and
Zanotto, 2007) and (Pellicciari, Berselli, and Balugani, 2015) use gradient-based methods such as
Sequential Quadratic Programming (SQP) that are known to have very low solve times and good
scalability. However, these algorithms can only deliver local optimal solutions and are not suited
for problems with multiple minima. Moreover, as indicated in (Huang et al., 2018), the optimum
obtained with gradient-based methods is greatly influenced by the selected starting points, which
are to be chosen arbitrarily.

To avoid this problem, heuristic optimization algorithms such as generalized pattern search
(GPS) (Gadaleta et al., 2019) or genetic algorithms (GA) (Van Oosterwyck et al., 2019) are of
interest. In contrast to gradient-based algorithms that do not search the entire design space of the
NLP problem, derivative-free algorithms like GA often sample a wide part of the search space in
order to be successful (Wenzhong and Porandla, 2005). Hence, it is important to select a suited
motion profile definition which allows to limit the design space and increases the chance of find-
ing the global optimum. Nevertheless, because these heuristic solvers do not exploit gradient
information, they are not computationally competitive with gradient-based methods (Betts, 1998).
In this paper, both a gradient-based and heuristic genetic algorithm are used to assess the tradeoff
between computational effort and global optimality.

Regarding the motion profile function, several papers rely on piecewise position functions,
where either cubic (Baggetta et al., 2021), quintic (Kuenzer and Husty, 2016), or trigonometric
(Nguyen et al., 2007) splines are used. However, the objective functions in these works, are char-
acterized by many local minima, causing the risk of getting stuck in a suboptimal solution. For
instance, in (Piazzi and Visioli, 1998), the usage of cubic splines resulted in a savings difference
of 18% between the global and local optimum. Yet, only time-optimal motion profiles were con-
sidered. Moreover, in (Biagiotti and Melchiorri, 2021) it is emphasized that for the optimization
problem using splines, the global optimum is not guaranteed and is undiscovered in some opti-
mization cases. In (Carabin and Scalera, 2020) and (Cheng et al., 2021), trapezoidal and cycloidal
speed profiles are compared. However, as these motion profiles are defined by the time and
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position constraints, they only allow to optimize the intermediate time instances without actually
altering the position function itself.

Finally, continuous motion profile functions such as classic polynomials (Lee and Ha, 2020)
are also popular because they do not introduce high jerk peaks into the system, which increases
the wear of the components. In (Boscariol et al. 2020), third and fifth-order polynomials are used
to describe the motion profile of the end-effector, yet only for functionally redundant mecha-
nisms. (Boryga and Grabo�s 2009) also employs polynomials but only considers an acceleration
constraint without looking at the energy consumption. Moreover, the resulting polynomial opti-
mization problem is known to be badly conditioned. For example in (Van Oosterwyck et al.
2019), the polynomial coefficients reached values up to 1:8 1020:

To overcome this issue, the authors of this paper propose to use Chebyshev polynomials. The
Chebyshev polynomials were introduced in (Vlassenbroeck and Van Dooren 1988) and (Mezzadri
and Galligani 2016) for solving generic optimal control problems. This is thanks to their orthog-
onal properties and important advantages regarding numerical analysis. However, contrary to the
present paper, (Vlassenbroeck and Van Dooren 1988) and (Mezzadri and Galligani 2016) also
approximate the system behavior with Chebyshev polynomials to limit the computational cost of
the optimization for a generic optimal control problem. Moreover, to the authors knowledge, no
exact bounds on the coefficients of the Chebyshev polynomials have been derived before, which
is crucial for limiting the design space and reducing the chance of failing to identify the glo-
bal minimum.

Recently, a Cheyshev based motion profile optimization routine has been presented by the
authors in (Van Oosterwyck et al. 2020). However, due to the numerous symbolic calculations
involved in constructing the objective function, solve times of almost 2 hours were reported. In
addition, the solutions in (Van Oosterwyck et al. 2020) were obtained using gradient-based solv-
ers which have a high risk of getting stuck in local minima. Finally, only theoretical reductions
were reported, thus, leaving the feasibility of the proposed motion profiles undetermined. This
paper builds upon these previous results by providing five critical improvements:

� In order to reduce the computational burden, a discrete approach is presented which elimi-
nates the use of symbolic operations. To do so, the discrete system property data which origi-
nates from the CAD motion simulations have to be properly rescaled and interpolated.

� As an accurate model of the system dynamics is crucial for a correct optimization, the dynam-
ics of the mechanism are extended by including damping and friction into the optimization
routine. In addition, a new identification procedure is described which is validated on an
industrial case.

� A derivation for exact bounds of the Chebyshev polynomial coefficients is introduced. This
allows limiting the feasible design space. The latter is an essential novelty of this paper as it
reduces the computational time of the heuristic optimizer and increases the chance that the
global optimum is revealed.

� To check the robustness of the proposed method against getting stuck in local optima, the
resulting optimization problem is solved with both a fast gradient-based and a global heuristic
solver (i.e. GA).

� Experimental tests have been carried out on an industrial pick-and-place unit to quantify the
actual energy savings and check the feasibility of the optimized motion profiles.

2. System modeling

The complete mechatronic system can be divided into two subsystems (Figure 2). On the one
hand, there is the mechanical subsystem which describes the dynamics of a generic single-axis sys-
tem. For high dynamical applications, these systems usually consist of slider-crank mechanisms
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and four-bar linkages (Berselli et al. 2016). Nevertheless, the approach is valid to any position-
controlled system where the mechanism is driven by a single actuator.

On the other hand, there is the actuation subsystem which converts the electrical energy into
mechanical energy and drives the mechanism. For the envisaged position-controlled systems,
PMSMs are becoming the industry standard for rotary applications, whereas linear motors are
used for fast and precise linear movements (Kiel 2008). In Figure 2, the PMSM actuator is repre-
sented by an equivalent DC model.

2.1. Mechanical subsystem

The dynamics of a single axis DOF mechanism can be described by means of the torque equation
(Dresig and Holzweißig 2010):

smðtÞ ¼ slðhÞ þ JðhÞ€h|fflffl{zfflffl}
sa

þ 1
2
dJðhÞ
dh

ð _hÞ2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
sv

þsf ð _hÞ : (1)

With reference to Figure 2 and Equation (1), let us define h ¼ hðtÞ as the Lagrangian coordin-
ate which describes the angular position of the main driving axis as a function of time t. The
motor torque smðtÞ is defined as the driving torque generated by the motor. The load torque
slðhÞ contains both gravitational forces as well as external process powers that act on
the mechanism.

Furthermore, all inertias of the mechanism’s components are related to the main driving axis
resorting to the concept of reduced moment of inertia. Therefore, the reduced inertia of the com-
plete system JðhÞ is defined as a combination of the reduced load inertia JlðhÞ and inertia of the
motor shaft itself Jm. Note that the position-dependent inertia of the system JðhÞ, results in two
torque components when it is reduced to the motor side. The acceleration torque sa represents
the part of the motor torque responsible for the motor acceleration forces that arise during the
movement, while the variation torque sv compensates for the variation of inertia in the system.

Finally, the frictional torque sf ð _hÞ is defined as the result of frictional forces such as, for
instance, viscous brush friction or dry bearing friction in the motor bearings and mechanical sys-
tem. A commonly used model of friction shows three components of force: Coulomb (sliding)
friction, viscous damping, and static friction (Ellis 2012). Regarding the PMSM, as indicated in
(Westphal 2001, 175), the only appreciable friction effect in operation is viscous friction. Thus,
coulomb and static frictions can be neglected in the PMSM model. For what concerns the mech-
anical model, only the viscous damping is modeled since the other friction components are con-
stant and will not have an effect on the optimal motion profile:

sf ð _hÞ ¼ lv _h , (2)

with lv the equivalent viscous friction coefficient.

Figure 2. Schematic of the q-axis of a single axis mechanism.
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The key benefit of the formulation in (1) is that it permits to model every possible mechanism
with a known geometry and allows to define a generic optimization approach.

2.2. Actuation subsystem

Concerning the dynamics of the PMSM as depicted in Figure 2 (represented by an equivalent DC
model), the electromechanical behavior can be easily described by the following basic laws
(Rizzoni and Kearns 2003, 843):

sm ¼ kti , (3)

u ¼ Riþ L
di
dt

þ � ¼ Riþ L
di
dt

þ pkv _h , (4)

with electric back emf �, resistance R, back emf constant kv, motor torque constant kt, and
number of pole pairs p, which can be found in the motor data sheet.

In what follows (4), the voltage drop L di
dt due to the armature inductance is omitted as the

mean value of its reactive power will be zero and therefore does not contribute to the system’s
energy need (Pellicciari, Berselli, and Balugani 2015).

Depending on whether the electric power flows from the drive unit to the PMSM’s or vice
versa, the PMSM operates in respectively motor or generator mode. In this latter condition,
depending on the capabilities of the drive unit, the generated electric power can be either stored
in a capacitor, dissipated as heat on a braking resistance, or transferred back to the energy source.
Recent commercial PMSM drives are sized so that no electric power is actually dissipated during
normal functioning so that the braking resistance is actually activated only under emergency con-
ditions (Berselli et al. 2016). Therefore, in what follows, it is assumed that all the generated
energy is returned to the grid and no losses occur in the process.

For a correct model of the actuation subsystem and prediction of the energy usage, it is
important to model other losses such as cooling fans and drive circuitry as well. Nevertheless, the
power consumption of these devices is generally considered constant and is therefore not affected
by the motion profile (Gadaleta, Pellicciari, and Berselli 2019).

In order to minimize the total energy need E of the application, it is crucial to quantify the
input energy of the complete system. Therefore, similar to (Berselli et al. 2016), a formulation of
the input electrical energy E is derived and a torque-based design objective is obtained which
allows to minimize the energy solely based on the mechanical parameters.

Starting from Equations (3) and (4), the instantaneous power Pe is defined as

Pe ¼ u i ¼ R
k2t

s2m þ pkv
kt

sm _h : (5)

The motion profile is defined on the time interval t 2 ½tA, tB� and must have zero initial and
final speed and acceleration, i.e. _hðtAÞ ¼ _hðtBÞ ¼ €hðtAÞ ¼ €hðtBÞ ¼ 0: Thus, the total energy can be
expressed as

E ¼
ðtB
tA

Pe dt ¼
ðtB
tA

R
k2t

s2m þ pkv
kt

sm _h

� �
dt : (6)

Then, by incorporating the torque equation from (1), the total energy of the motion is given by:

E ¼ pkv
kt

ðtB
tA

ðsa þ svÞ _h dt|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Ek

þ pkv
kt

ðtB
tA

sl _h dt|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Ep

þ
ðtB
tA

R
k2t

s2m þ pkv
kt

sf _h

� �
dt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

El

:
(7)
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Here, the first term Ek represents the kinetic energy of the moving masses in the system. Due
to the rest-to-rest motion of the envisaged applications, this term reduces to zero. Further, the
term Ep represents the potential energy stored in the system. As this term Ep only depends on the
fixed start hA and end position hB, it is disregarded in the optimization routine (Berselli et al.
2016). The final term El represents the energy that is lost due to the coil resistance and frictional
forces and is the only term that is affected by optimizing the motion profile hðtÞ: Nevertheless, in
many industrial applications, the frictional forces sf are negligible (Park, 1996), especially if the
inertial loads are predominant. Thus, the energy losses El can be expressed as:

El ¼
ðtB
tA

R
k2t

s2mdt ¼
RDt
k2t

s2rms, (8)

where srms is the root-mean-square (RMS) value of the motor torque sm: This proves that the
RMS torque srms can be effectively used as an optimization objective to minimize the total energy
usage of the system. This is very useful in situations where the motor coil properties are
unknown or parameters are missing (Berselli et al. 2016).

3. Identification

3.1. Inertia and load torque

Identification of all the position varying parameters in the highly nonlinear differential torque
Equation (1) is not straightforward. Fortunately, machine builders design their machines in 3D
CAD multibody software. For this reason, (Berselli et al. 2016) and (Van Oosterwyck et al. 2019)
describe a technique to derive the position dependency of critical parameters inertia JðhÞ and
load torque slðhÞ, based on three CAD motion simulations (Figure 3).

In this paper, the identification routine is illustrated by applying it to an industrial pick-and-
place unit (Figure 4) that performs repetitive movements between start point A with angular pos-
ition hA ¼ 0 and endpoint B with angular position hB ¼ 173:6

�
: The resulting inertia JðhÞ and

load torque slðhÞ profiles are presented in Figure 5. Because of the machine position limits hA
and hB, only the green shaded part of the system properties is relevant during operation.

3.2. Viscous friction coefficient

Once the system properties JðhÞ and slðhÞ are determined, the only indefinite term in Equation (1)
is the friction torque sf , and more specifically lv. In the previous description of the energy flows,
the friction torque sf was neglected, leading to a simple objective (i.e. srms) to quantify the energy
consumption. However, it is important to verify this statement for the intended setup. Therefore
this section describes a method to quantify the frictional forces sf :

Figure 3. Schematic overview of the procedure for extracting position-dependent properties JðhÞ and slðhÞ based on three dif-
ferent CAD motion simulations (Van Oosterwyck et al. 2019).
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Since the viscous friction coefficient lv parameter is highly dependent on the practical setup, it
is often only possible to determine this parameter experimentally. Therefore, a first measurement
is carried out by using an arbitrary motion profile h�ðtÞ as a set point and recording the resulting
actual motor torque sm;measðtÞ and position hmeasðtÞ: The arbitrary motion profile h�ðtÞ can be
determined by using a default motion profile such as a trapezoidal or s-curve profile.

After this measurement, a least squares fit can be used to determine the experimental value of
lv, by fitting the torque model smðhmeasðtÞ, lvÞ with the measured motor torque sm;meas:

However, using the measured position hmeas and its time derivatives _hmeas, €hmeas in the torque
Equation (1) leads to unfeasible results since the derivatives amplify any noise that is present in
the measurement. Therefore, the measured position hmeasðtÞ is fitted with an n-th degree polyno-
mial hfitðtÞ ¼

Pn
i¼1 ait

i and is differentiated symbolically to smooth out any noise.
The friction parameter lv is thus determined by comparing the measured torque sm;measðtÞ

with the torque model and fitted motion profile smðhfitðtÞÞ :
minimize

lv2R
jjsm;measðtÞ � smðhfitðtÞ,lvÞjj2: (9)

For the pick-and-place unit, a 13-th degree polynomial was fitted to the position and a viscous
damping coefficient of 0.0157 Nms/rad was found. In Figure 6, a comparison of the measured
sm;measðtÞ and calculated smðhfitðtÞÞ torque is presented. The difference between the virtual torques
(with and without friction) is minimal, which indicates that the friction can be neglected for the
present case. The graph also shows a close correlation between the virtual and measured torque,
which indicates that the virtual model can be effectively used to minimize the RMS torque srms

and, by extension, the energy consumption E.

4. Optimization approach

4.1. Motion Profile definition & rescaling

In this paper, a Chebyshev polynomial
Pn

i¼0 piTiðxÞ is used to define the position profile hðtÞ,
where t 2 ½tA, tB�, in between the start (hðtAÞ ¼ hA) and endpoint (hðtBÞ ¼ hB) of the motion

Figure 4. Experimental set-up (left) and schematic overview (right) of the pick- and place unit.

Figure 5. Values of system properties inertia JðhÞ and load torque slðhÞ:
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task. The sequence of orthogonal Chebyshev polynomials TkðxÞ ¼ Tkð cosð#ÞÞ, defined on the
interval x 2 ½�1, 1�, is obtained from the recurrence relation:

T0ðxÞ ¼ 1, T1ðxÞ ¼ x,
Tkþ1ðxÞ ¼ 2xTkðxÞ � Tk�1ðxÞ, (10)

Alternatively, the polynomials can be derived from the trigonometric definition, which gives
exactly the same results:

TkðxÞ ¼ Tkð cosð#ÞÞ ¼ cosðk#Þ: (11)

To use TnðxÞ as a representation for the position profile, a linear transformation from t into
the range ½�1, 1� of x is required (Thompson 1994):

t ¼ 1
2
ðtB � tAÞxþ 1

2
ðtB þ tAÞ ¼ axþ b, (12)

where scale factors a and b are defined for the purpose of the following paragraphs. In add-
ition, the position h 2 ½hA, hB� is also rescaled to the interval / 2 ½�1, 1�, which makes it possible
to obtain strict bounds on the design space in (32). Thus, the rescaled motion profile description
/ðxÞ of degree n with optimizable coefficients p ¼ ½p0, p1, :::, pn�T is obtained:

/ðxÞ ¼
Xn
i¼0

piTiðxÞ, x 2 �1, 1½ �: (13)

The output of the motion simulations in the previous section deliver ns samples of inertia J ¼
½J1, :::, Jns �T , load torque sl ¼ ½sl, 1, :::, sl, ns �T and corresponding angle query points h ¼ ½h1, :::, hns �T :
Due to the position rescaling of the motion profile /ðxÞ, the angle query points h have to be
rescaled accordingly:

/ ¼ 2
ðhB � hAÞ h� ðhB þ hAÞ

ðhB � hAÞ ¼ c hþ d: (14)

Moreover, as the property description is now defined on the rescaled interval / 2 ½�1, 1�, the
following relationship holds with regard to the derivative properties such inertia variation dJð/Þ

d/ :

dJð/Þ
d/

¼ 1
2
ðhB � hAÞ dJðhÞdh

¼ e
dJðhÞ
dh

: (15)

When using the rescaled position profile /ðxÞ, it is important to rescale the torque from
Equation (1) as well. Otherwise, the resulting values of the torque profile sðxÞ are distorted which
results in different objective values (i.e. srms) and solutions. To preserve the motor torque’s abso-
lute values, the following rescaled torque equation is introduced:

Figure 6. Comparison of the virtual smðhpðtÞÞ and measured torque semðtÞ (with and without friction).
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smðxÞ ¼ slð/Þ þ 1
2
dJð/Þ
d/

1
e

_/
a:c

� �2

þ JðhÞ
€/
a2:c

þ lv
_/
a:c

: (16)

An overview of the position and torque rescalings is presented in Figure 7. The new system
Equation (16) ensures the system dynamics are equally scaled and the minima are not altered.

For what concerns the constraints, the rest-to-rest motion requires zero speed _/ and acceler-
ation €/ in the start and endpoint:

/ð�1Þ ¼ �1, _/ð�1Þ ¼ 0, €/ð�1Þ ¼ 0,
/ð1Þ ¼ 1, _/ð1Þ ¼ 0, €/ð1Þ ¼ 0:

(17)

Referring to (13), and by incorporating the motion profile constraints (17), the lower degree
coefficients ½p0, :::, p5�T can be written as a function of the remaining coefficients ½p6, :::, pn�T , such
that n� 5 degrees of freedom (DOF) are kept available for the optimization algorithm (Hsu,
Huang, and Fung 2014). Thus, the energy optimal motion profile problem is formulated as the
following minimization problem with design variable vector o ¼ ½p6, :::, pn�T :

minimize
o2Rn�5

srms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

ð1
�1

smð/ðx, oÞÞ2 dx

s
: (18)

In some applications, an additional constraint of zero jerk in the begin and endpoint can be
imposed to limit the vibrations:

&/ð�1Þ ¼ 0 ; &/ð1Þ ¼ 0: (19)

Because of these two extra equations, the DOF is reduced to n� 7 and the design variable vec-
tor can be expressed as o ¼ ½p8, :::, pn�T :

Figure 7. Original hðtÞ and rescaled position profiles hðxÞ, /ðxÞ with their corresponding torque equations.
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4.2. Initialization & design space

In this paper, the resulting optimization problem is solved with both a fast gradient-based solver,
the BFGS (Broyden–Fletcher–Goldfarb–Shanno) quasi-Newton method (Nocedal and Wright
2006), and a global heuristic solver, the genetic algorithm (Holland 1992).

For gradient-based optimization, a starting point needs to be defined. The use of the
Chebyshev basis TiðxÞ in representation (13) allows initializing the optimization parameter vector
at zero since the coefficients in a convergent Chebyshev series development of the motion profile
function /ðxÞ would converge to zero (Majidian 2017). Here, we can safely assume some similar
behavior for the coefficients pi in (13).

For what concerns the genetic algorithm, a similar approach is used for the initialization of
the population. However, because a GA often samples a wide part of the design space
(Wenzhong and Porandla 2005), it is beneficial to determine the exact bounds on the design vec-
tor o. By doing so, the solver can cover a large part of the design space and reveal the global
optimal solution. In the following paragraphs, thanks to the rescaled Chebyshev motion profile
/ðxÞ, strict bounds on the design vector o can be derived.

To define these bounds, we take a look at the projection of the position profile /ðxÞ onto the
orthogonal Chebyshev polynomial basis TlðxÞ: Given that x ¼ cosðhÞ, we introduce the inner
product F:

F ¼ h/ðxÞ,TlðxÞi ¼
ð1
�1

/ðxÞTlðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dx

¼
ð2p
0

/ðcos hÞTlðcos hÞ dh:

(20)

Then, by taking into account the position function definition (13), we find the following
result:

F ¼
ð2p
0

Xn
k¼0

pkTkðcos hÞ
 !

Tlðcos hÞ dh

¼
Xn
k¼0

pk

ð2p
0

Tkðcos hÞTlðcos hÞ dh:

(21)

Here, the integral I ¼ Ð 2p0 Tkðcos hÞTlðcos hÞ dh can be further simplified by using the
Chebyshev polynomial orthogonality properties, which are rederived here for the sake of readabil-
ity. Because of Equation (11) and by using the inverse Simpson rule of trigonometry, the integral
I can be written as:

I ¼
ð2p
0

cos ðkhÞ cos ð‘hÞ dh

¼ 1
2

ð2p
0

cos ððkþ ‘ÞhÞ dhþ 1
2

ð2p
0

cos ððk� ‘ÞhÞ dh:

(22)

This integral can be split into three cases:
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1. k ¼ ‘ ¼ 0

I ¼ 2p, (23)

2. k ¼ ‘ 6¼ 0

I ¼ p, (24)

3. k 6¼ ‘

I ¼ 0: (25)

Thus, by taking into account (25), only the term for which k¼ l remains in the summation F:

F ¼ p‘

ð2p
0

cos2ð‘hÞ dh: (26)

This can be split into two cases. For ‘ ¼ 0 and by making use of (23) and (20) we find:

p0 ¼ 1
2p

ð2p
0

/ðcos hÞ dh, (27)

and for ‘ > 0, by making use of (24) and (20):

p‘ ¼ 1
p

ð2p
0

/ðcos hÞ cos ð‘hÞ dh: (28)

For h 2 ½0, 2p�, cos h lies in interval ½�1, 1�: Because of the position rescalings of the motion
profile /ðxÞ, the image /ðcos hÞ also lies in the interval ½�1, 1�: Thus, we find:

jp0j � 1
2p

ð2p
0

j/ðcos hÞj dh � 1
2p

ð2p
0

dh ¼ 1: (29)

and

jp‘j � 1
p

ð2p
0

j/ðcos hÞjj cos ð‘hÞj dh � 1
p

ð2p
0

j cos ð‘hÞj dh: (30)

To calculate this last integral, we use the periodicity of the function cos ð‘hÞ: This function has
a period of 2p=‘, so goes ‘ times up and down on the interval ½0, 2p�: So, after taking the abso-
lute value of this function, we find 2‘ times the integral over the positive part of a period, for
example, the interval ½�p=2‘, p=2‘� :

1
p

ð2p
0

j cos ð‘hÞj dh ¼ 2‘
p

ðp=2‘
�p=2‘

cos ð‘hÞ dh ¼ 4
p
: (31)

Thus, the following bounds for the coefficients pi are obtained

jp0j � 1 and jp‘j � 4
p
, ‘ ¼ 1, :::, n: (32)

These constraints on the design space simplify the subsequent optimization.
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5. Results

5.1. Motion Profile optimization

In order to assess the performance of the proposed method, a set of optimizations has been per-
formed on the industrial pick-and-place unit depicted in Figure 4. The mechanism is required to
move between its start position hA of 0

�
and end position hB of 173:6

�
and has a motion time Dt

of 73:5ms: As for the constraint, two different cases are considered, namely

� Jerk Free (JF): Only the boundary constraints of (17) are taken into account. The correspond-
ing rescaled Chebyshev position profile /ðxÞ of degree n is hereafter referred to as cheb”n”. A
5th-degree polynomial, hereafter indicated as poly5, is taken as the reference motion profile
for comparison purposes. This is the smallest degree polynomial that satisfies the constraints.

� Jerk Zero (J0): In addition to the constraint of a jerk-free optimization, a zero-jerk constraint
is added in the start, and endpoint (19) is added to the motion profile definition. The result-
ing n-th degree position profile /ðxÞ is referred to as cheb”n”J0. The reference motion profile
is in this case a 7th-degree polynomial, hereafter referred to as poly7J0.

For every case, the resulting optimization problem is solved in a MATLAB environment for
degrees n ¼ 7, 9, 11, and 13. The results are presented in Figure 8 and Tables 1 and 2 where for
every motion profile, the corresponding RMS torque srms and solve time tsol are displayed.
Savings up to 54.4% are obtained in under 0.77 s. The results clearly converge toward a minimal
value for increasing degree n. In general, the motion profiles which include the jerk constraint
(19), have slightly bigger srms values, which is to be expected due to the fact that this extra con-
straint limits the acceleration near the endpoints while it is desirable to have high accelerations
here since the inertia is low.

In Table 1, the srms values of a conventional trapezoidal 1/3 motion profile are presented as
well, which accelerates during 1/3rd of the time, moves at a constant speed during 1/3rd, and
decelerates at the last 1/3rd (Park, 1996). What is interesting in this table is that the torque
demand can already be significantly reduced by selecting an adequate default motion law.
Notwithstanding that the greatest savings are realized after optimization.

It is worth noting that for the jerk-free motion profiles, the same solution was found for both
the genetic algorithm and gradient-based solver. However, the calculation times with GA are con-
siderably higher. When including the jerk constraint, the GA comes close but does not completely
reveal the full optimization potential. Therefore, for what concerns the present study, gradient-
based optimizations algorithms are preferable. Since the GA did not obtain a better solution for
any motion profile in the bounded search space, we can expect that the results obtained with the
gradient-based method are global optimal solutions.

Although only the forward motion is considered here, similar results can be obtained for the
return motion by simply changing the position constraints.

Figure 8. Results of the motion profile optimization for different degrees n.
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5.2. Measurements

The theoretical results are validated against experimental measurements on the pick-and-place
unit (Figure 4). The setup comprises a Beckhoff CX5140 PLC, a Beckhoff AX5901 motor drive,
and a Beckhoff AM3064 PMSM, which is connected to the shaft of the mechanism. In order to
measure the input electrical energy, a Tektron PA4000 power analyzer is used to analyze the
power supply (Figure 9).

The theoretical savings potential of the motion profile optimization is only fulfilled when the
motor is capable of following the optimized position setpoint. Therefore, a performant motion
controller needs to be designed in order to keep the tracking error as low as possible. Here, simi-
lar to (Van Oosterwyck et al. 2019), a cascade controller with torque and speed feedforward is

Table 1. Results of the motion profile optimization (Jerk Free).

Gradient-based Genetic algorithm

JF srms ½Nm� tsol ½s� srms ½Nm� tsol ½s�
poly5 (ref.) 22.48 – 22.48 –
trap 17.16� 23.7% – 17.16� 23.7% –
cheb7 13.78� 38.7% 0.21 13.78� 38.7% 3.28
cheb9 12.47� 44.5% 0.32 12.47� 44.5% 40.33
cheb11 12.33� 45.2% 0.51 12.33� 45.2% 67.05
cheb13 12.29� 45.4% 1.06 12.29� 45.4% 142.34

Table 2. Results of the motion profile optimization (Jerk 0).

Gradient-based Genetic algorithm

J0 srms ½Nm� tsol ½s� srms ½Nm� tsol ½s�
poly7J0 (ref.) 28.44 – 28.44 –
cheb9J0 16.12� 43.3% 0.27 16.12� 43.3% 6.15
cheb11J0 13.61� 52.2% 0.38 14.11� 50.4% 175.23
cheb13J0 12.98� 54.4% 0.77 13.15� 53.8% 195.02

Figure 9. Schematic overview of the experimental setup.

Figure 10. Schematic overview of the cascade motion controller with feedforward (Van Oosterwyck et al. 2019).
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employed as it has proven to be successful for high dynamic systems. The look-up table for the
feedforward torque is determined using the torque from Equation (1) (Figure 10).

In Tables 3 and 4, the results of both the measured RMS torque srms;meas and measured input
electrical energy Emeas for different motion profiles are presented. As expected from the simula-
tions, the lowest absolute energy consumption is obtained when using jerk-free motion profiles.
When the jerk constraint is active, a decrease of 62.9% in energy consumption can be achieved
by optimizing the motion profile, while a relative saving of 52.5% is possible if no extra constraint
on the jerk is imposed.

The measured srms;meas and calculated RMS motor torque srms show a very high similarity,
which confirms that the present system model is valid.

6. Conclusion

This study proposes a novel approach for motion profile optimization of PTP motions with
Chebyshev polynomials. At first, system properties have been extracted from both CAD motion
simulations and measurements to obtain an accurate virtual twin of the system. A Chebyshev
motion profile with scaling laws is presented. Especially novel in this paper is the derivation of
the boundary conditions of this profile which enables to define bounds for the design variables.
The latter allows to use an optimizer that is designed to obtain globally optimal solutions, i.e.
genetic algorithm. In addition, the solutions are validated with fast gradient-based optimization
algorithms. Finally, experimental optimization results have been considered to verify the feasibility
of the proposed solutions.

The numerical results, achieved on an exemplary model, clearly show that large srms savings of
up to 53.8% can be achieved. In addition, it is shown that by employing Chebyshev polynomials
for the motion profile, a fast gradient-based optimization can be effectively employed with solve
times under 0.8 s. At last, the validation measurements show that similar savings are obtained on
the real machine with a maximum energy reduction of 62:9%:

Due to the straightforward implementation of both the optimization itself and integration of
the resulting motion profiles in the motor drive, the proposed method can be easily adopted in
any existing configuration where the CAD is data available. Therefore, the proposed method is
expected to have a beneficial impact on the energy usage of the envisaged PTP applications.

Nomenclature

h, / arrays of standard and rescaled position CAD samples
Dt motion time

Table 3. Experimental results with energy measurement (Jerk Free).

JF srms ½Nm� srms;meas ½Nm� Emeas ½Wh�
poly5 22.48 19.59 312.2
trap 17.16� 23.7% 15.88� 18.98% 215.1� 31.1%
cheb7 13.78� 38.7% 13.40� 31.6% 181.7� 41.8%
cheb9 12.47� 44.5% 12.07� 38.4% 152.3� 51.2%
cheb11 12.33� 45.2% 11.93� 39.1% 150.1� 51.9%
cheb13 12.29� 45.4% 11.83� 39.6% 148.2� 52.5%

Table 4. Experimental results with energy measurement (Jerk Zero).

J0 srms ½Nm� srms;meas ½Nm� Emeas ½Wh�
poly7J0 28.44 25.30 458.5
cheb9J0 16.12� 43.3% 15.81� 37.5% 222.9� 51.4%
cheb11J0 13.61� 52.2% 13.08� 48.3% 170.3� 62.9%
cheb13J0 12.98� 54.4% 12.72� 49.7% 170.8� 62.7%
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J, sl arrays of inertia and load torque CAD samples
p, o coefficient and design variable vector
lv viscous friction coefficient
/, _/, €/, &/ rescaled motor position, speed, acceleration and jerk
sa, sv acceleration and variation torque
sl, sf load and frictional torque
sm, sm;meas calculated and measured motor torque
srms, srms;meas calculated and measured root-mean-square motor torque
h, _h, €h, &h motor position, speed, acceleration and jerk
h� setpoint position
hA, hB start and end position
hmeas, hfit measured and fitted position
a, b, c, d, e scaling constants
E, Emeas calculated and measured electrical input energy
Ek, Ep,El kinetic, potential and loss energy
i current
J, Jm, Jl total, motor and load inertia
k v, kt back emf and motor torque constant
p pole pairs
Pe electric power
R resistance
t, x standard and rescaled time
tA, tB start and end time
Ti i-th Chebyshev polynomial
tsol solve time
u, � voltage and electric back emf
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