
CAD Based Trajectory Optimization of PTP Motions using Chebyshev
Polynomials

Nick Van Oosterwyck1,3, Abdelmajid Ben yahya1, Annie Cuyt2, Stijn Derammelaere1

Abstract— Trajectory optimization of position-controlled
servo systems driving repetitive tasks is very appealing in
research as it allows for more performant and efficient machines
without any additional investment in hardware. In particular,
monoactuator systems with position-dependent system prop-
erties have received much attention in the literature as they
represent a large part of mechatronic systems and can easily be
modeled with existing CAD packages. Although techniques for
optimization of the position profile are well documented, most
literature is based on the heuristic and iterative optimization of
polynomial and piecewise position curves. This results in locally
optimal solutions and long calculation times. In this context, the
purpose of the present paper is twofold. On the one hand, this
paper outlines the theoretical framework for a fast trajectory
optimization approach of single degree of freedom (1-DOF)
systems with Chebyshev polynomials. On the other hand, a
comparison of these solutions with results obtained using state-
of-the-art techniques is provided. To do so, system property
data is extracted with CAD motion simulations and converted
into closed mathematical descriptions using polynomial inter-
polation. By combining these polynomial system models with a
reconditioning and scaling of the trajectory definition, a novel
problem formulation is obtained, which allows for fast gradient-
based optimization techniques while limiting the risk of getting
stuck in a local optimum. In this study, it was found that
although substantial savings are achieved with state-of-the-art
optimization methods, our proposed method with Chebyshev
polynomials results in an extra saving potential of up to 6.7%.
The findings also reveal a significant reduction in computational
complexity. The latter not only supports the applicability of the
proposed technique but also has implications for new system
designs where real-time trajectory optimization is of interest.

I. INTRODUCTION

The energy efficiency of industrial machinery is becoming
a topic of primary importance due to stricter government
regulations and economic considerations. This increasing
interest has heightened the need for new techniques that
have lower energy demands without compromising the sys-
tem performance. Statistics reveal that electrical motors are
responsible for about 40% of overall power consumption,
which indicates that there are major savings to be made
in this field [1], [2]. For instance, previous research has
demonstrated that acquiring new machinery with existing
well-established energy-conserving technologies results in
savings of approximately 11–18% [1].
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Nevertheless, the adoption of new equipment entails cer-
tain costs, which hampers the wide spread of these in-
novations. Trajectory optimization on the other hand, is
an example of a cost-effective alternative [3] with a wide
application area, as it requires no additional investment in
hardware. Moreover, the fact that machine users very often
only define the start point, endpoint and duration of a motion
task implies that the position function θ(t) between those two
fixed points can effectively be optimized.

Many recent studies regarding trajectory optimization have
paid attention to the energy dissipation in the electric motor
in order to reduce the consumed electrical energy and thus
enhance the system sustainability. However, apart from these
electrical savings, reducing losses also has the beneficial
effect that it may prevent the motor from overheating,
which is one of the main reasons for motor failures (25%)
[4]. Therefore, energy-optimal motion planning can provide
a solution in manufacturing lines where productivity and
reliability are of utmost importance.

Given the tendency to evolve from a monoactuator driving
all machine components towards dedicated positioners for
each machine movement [5], it is evident that one machine
can contain numerous trajectory optimization opportunities.
Moreover, by controlling and optimizing each movement
separately, a flexible and reconfigurable machine is obtained
that is able to cope with the ever-growing production needs
[3].

A. Related Work

Within this scenario, several techniques for trajectory
optimization have been proposed in multiple disciplines. An
overview of this is covered in survey [6] and books [7], [8].
In general, all these optimization methods can be divided into
two main categories: (1) indirect and (2) direct optimization
techniques.

On the one hand, an indirect method uses calculus of
variations and is based on Pontryagin’s Maximum Principle
[8]. Although there have been some promising results [9],
[10], it tends to be abandoned recently due to the small
convergence area and difficulties incorporating constraints
[11]. Thus, it delivers impractical solutions.

On the other hand, direct approaches transform the op-
timization problem into a nonlinear programming problem
(NLP), which can be solved with well known numerical
techniques [8]. These methods are fundamentally different
from indirect approaches as the state and/or control are
discretized and parameterized. As indicated in the following



paragraphs, they have proven successful for several complex
applications.

For 3D robotic manipulators, interval analysis was em-
ployed in [12] and [13] to determine global optimal trajecto-
ries in terms of respectively time and jerk. In [14], interval
procedures were applied in order to provide an estimate of
the global optimum while incorporating torque constraints.
Nevertheless, they do not consider the energy efficiency of
the system.

In [15], [16] and [11], a multiobjective optimization was
established using Sequential Quadratic Programming (SQP),
in which time and root mean square (RMS) jerk/torque
were considered simultaneously. In addition, [17] employs
the same optimization technique but considers the input
electrical energy.

However, the objective functions in these works ensuing
from piecewise trajectories are characterized by many local
minima, causing the risk of getting stuck in a suboptimal so-
lution. For instance, [12] mentions an extra savings potential
of 18% for the global solution compared to local solutions
when piecewise cubic splines are employed. Moreover, as
indicated by [18], the results of an SQP method are greatly
influenced by the selected starting points, which are to be
chosen arbitrarily.

Further, (meta-)heuristic methods relying on randomized
optimization iterations, such as genetic algorithms (GA) [18],
[19], [20], [21] and generalized pattern search (GPS) [22]
are popular for trajectory optimization given their flexibility
to solve many kinds of problems. Yet, the stochastic property
implies there is a risk of getting stuck in a local optimum,
even after a prolonged optimization time. In addition, [19]
and [20] show that heuristic methods require long calculation
time as ad hoc solve times of up to one hour were reported.
Further, these techniques require tuning of the algorithm
settings, which hinder an efficient solution.

As an alternative, [23] describes a convex path tracking
approach for robots, which allows optimization based on
interior point methods. However, an analytic description
of the system dynamics is required, which is not easily
obtained for many industrial 1-DOF systems. To avoid this
obstacle, [3] and [9] focus on systems with constant inertia.
Nonetheless, to cover the majority of machine applications, it
is essential to consider varying properties such as position-
dependent inertias J(θ). Therefore, [21] and [22] use the
often already available CAD models to extract data samples
of critical position-dependent system properties.

B. Method

In light of the considerations mentioned above, a CAD-
based method for computing energy-optimal PTP (Point-to-
Point) trajectories of single DOF mechanisms is presented in
[21] and [22]. However, due to the classic trajectory descrip-
tions and stochastic property of the employed algorithm, the
obtained results can be improved. Therefore, building upon
the aforementioned results, this paper is characterized by the
following features:

• Similarly to [21], [22], CAD motion simulations are em-
ployed to extract discrete samples of system properties
such as inertia J and load torque Tl. However, differ-
ently from the aforementioned literature, the property
data is translated into closed mathematical descriptions
using polynomial curve fitting in order to obtain an
analytic model of the system, allowing a fast evaluation
of the objective function.

• An orthogonal Chebyshev polynomial is selected as
a position profile, instead of classic polynomials [21]
or cubic splines [22], in an attempt to increase the
tool robustness to get stuck in local minima. As these
Chebyshev polynomials are defined on the interval
[-1,1], the corresponding system equation should be
altered accordingly.

• For the objective function, a torque-based approach is
employed where the RMS torque is minimized in order
to reduce the system’s energy demand. Furthermore,
our method is illustrated by a practical example of an
industrial pick-and-place unit, which allows comparing
the results with the energy savings achieved in [21].

In general, it will be shown how Chebyshev polynomials
combined with analytic property descriptions outperform
classic heuristic methods in terms of both achieved savings
and solve time.

II. SYSTEM MODELING

The dynamics of a 1-DOF mechanism can be described
by means of the torque equation in (1). With reference to
Fig.1, let us define θ = θ(t) as the Lagrangian coordinate
which describes the angular position of the main driving axis
as a function of time t, Tm(θ) as the driving torque applied
to this main axis, Tl(θ) as the load torque, Jm as the motor
inertia and Jl(θ), J(θ) as the reduced moment of inertia of
respectively load and complete system:

Tm(t) = Tl(θ) +
1

2

dJ(θ)

dθ
(θ̇)2 + J(θ)θ̈. (1)

θ

Fig. 1. Simplified model of a single axis driven mechanism with driving
torque Tm(θ), inertia J(θ) and load torque Tl(θ).

In this paper the optimization procedure is illustrated by
applying it to an industrial pick- and place unit (Fig. 2) that
is expected to perform repetitive movements between start
point A with related angular position θA at time instant tA
and endpoint B with angular position θB at time instant tB
(Fig. 5). Thus the system has a motion time ∆t = tB − tA.

For an efficient optimization, it is essential to obtain an
analytical description of the positional system properties
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Fig. 2. Experimental set-up (left) and schematic overview (right) of the
pick- and place unit.

J(θ) and Tl(θ). Therefore, the following passages provide
a method to obtain a mathematical function of these critical
properties.

A. Extracting System Properties from CAD Models

Due to all the position varying parameters in the torque
equation, identification of the highly nonlinear differential
equation (1) is not straightforward. Fortunately, machine
builders design their machines in 3D CAD multibody soft-
ware. One could try to determine the driving torque Tm(t)
for a certain position profile θ(t) with a single CAD sim-
ulation. However, employing them as such in an iterative
optimization routine, intolerably increases the computational
burden.

Therefore, it is convenient to use the available CAD model
more thoughtfully. For this reason, [21] and [22] describe
a technique to derive the position dependency of critical
parameters inertia J and load torque Tl, based on three CAD
motion simulations.

The motion simulations deliver ns samples of inertia
J = [J1, . . . , Jns

]T , load torque Tl = [Tl,1, . . . , Tl,ns
]T and

corresponding angle query points θ = [θ1, . . . , θns ]T , where
θ1 = θA and θns = θB . In what follows, the property vectors
J and Tl are referred to by the generic property vector
Y = [Y1, . . . , Yns

]T , allowing the method to be extended
with extra properties. For more details on the procedure, the
reader is referred to [21].

B. Polynomial Fitting of the Mechanical Properties

The property description obtained by the simulations de-
scribed above will be a collection of separate samples. When
envisaging an efficient optimization procedure, it is essential
to obtain an explicit mathematical description of each pa-
rameter in (1). For this purpose, polynomial interpolation is
applied to the discrete data samples.

However, when applying polynomial curve fitting to de-
termine the polynomial property description Y (θ), a linear
system with Vandermonde matrix needs to be solved, which
can cause numeric problems for high-order polynomials. In
order to improve the numerical properties of the method and
to produce a more reliable fit, the angle vector θ is rescaled
to the vector φ in the interval [−1, 1]:

φi =
2(θi − θ1)

θns − θ1
− 1, i = 1, .., ns. (2)

Subsequently, polynomial interpolation is applied to the
vectors Y with query points φ, where a polynomial Y (φ)

(3) of degree d with coefficients a = [a0, a1, . . . , ad]
T is

determined in a least-squares sense:

Y (φ) ≈
d∑
i=0

aiφ
i, φ ∈ [−1, 1]. (3)

The problem is practically solved by applying the MAT-
LAB function polyfit. The trajectory is defined by φ = φ(t)
with t ∈ [tA, tB ], φ(tA) = −1 and φ(tB) = 1 (Fig. 5),
which holds the following relation with the original trajectory
description θ(t):

φ =
2

(θB − θA)
θ − (θB + θA)

(θB − θA)

= C1 θ + C2.

(4)

Moreover, as the property description Y (φ) is now defined
on the rescaled interval [−1, 1], the following relationship
holds with regard to the derivative properties:

dY (φ)

dφ
=

1

2
(θB − θA)

dY (θ)

dθ
= C3

dY (θ)

dθ
. (5)

Scale factors C1, C2 and C3 have been defined for the
purpose of the following sections.

C. Convergence Analysis

It should be noted that higher degree polynomials can
be oscillatory between the data points and can lead to
an over-fitted model. In addition, a higher degree makes
the calculations more complex as the functions consist of
more terms and thus, requires more symbolic operations.
Therefore, the degree d must be kept limited in order to
prevent this phenomenon. Nevertheless, selecting the degree
d too low can lead to a poor fit of the data.

It becomes apparent that an optimal degree dc imposes
itself where the data must be approximated accurately while
keeping the polynomial degree as low as possible. This
optimal degree dc is obtained with the aid of a convergence
analysis. The quality of the fit is determined by means of the
Euclidean or L2-norm (square root of the sum of squares)
of the residuals rY = Y − Y (φ),which is an efficient and
accurate technique for these kinds of fitting problems:

||rY ||2 =

√√√√ ns∑
i=1

r2i =

√√√√ ns∑
i=1

(Yi − Y (φi))2. (6)

The degree d is systematically increased in order to obtain
a better representation, while the L2-norm is evaluated. As
indicated in Fig. 3, from a certain convergence point dc
onwards, increasing the degree d will not add any significant
improvements.

Fig. 4 shows the values of inertia J and load torque Tl

data vectors as a function of the rescaled crank position φ for
the considered mechanism, highlighting the high variability
of both parameters across the range of motion.

Additionally, the corresponding fitted polynomials J(φ)
and Tl(φ) are presented, which demonstrates a very strong
similarity between the obtained CAD data Y and analytical



Fig. 3. Convergence analysis of system properties J(φ) (top) and Tl(φ)
(bottom) with their corresponding convergence points dJc and dTl

c.

descriptions Y (φ). Due to the continuity of the obtained
property descriptions Y (φ), the property variations dY (φ)

dφ
can be easily derived as well.

Fig. 4. Values of data vectors J and Tl and corresponding polynomials
J(φ) and Tl(φ).

III. OPTIMIZATION APPROACH

Every optimization routine uses certain design parameters
which are adjusted by the algorithm in order to converge
towards an optimal solution. For trajectory optimization,
these design variables define the shape of the position profile
between start point A and endpoint B (Fig.5).

A. Trajectory Definition

This paper studies the use of Chebyshev polynomials for
the position profile, which consists of a sequence of orthog-
onal Chebyshev polynomials defined on the interval [−1, 1].
One usually distinguishes between Chebyshev polynomials
of the first, second, third and fourth kind, which are named
after the Russian mathematician Pafnuty Chebyshev. Here,
will be focused on the most commonly used Chebyshev
polynomials of the first kind Tn, defined by the recurrence
relation:

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2xTn(x)− Tn−1(x).

(7)

However, the position profile φ(t) with time variable t is
defined in the finite range [tA, tB ] (Fig. 5). To use Tn(x) as a
representation of the position profile, a linear transformation
into the range [−1, 1] of x is required [24]:

t =
1

2
(tB − tA)x+

1

2
(tB + tA)

= C4x+ C5.
(8)

Thus, the final trajectory description φ(x) of degree n with
optimizable coefficients p = [p0, p1, . . . , pn]T is obtained
(Fig. 5), hereafter referred to as cheb ”n”:

φ(x) =

n∑
i=0

piTi(x), x ∈ [−1, 1]. (9)

t
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Fig. 5. Original (left), position rescaled (middle) and time rescaled (right)
profile of the trajectory between start point A and endpoint B

B. Rescaling Torque Equation

Due to the rescalings (4), (5) and (8), employing the
typical torque equation (1) as such, leads to improper results.
Therefore, this equation is extended (10) with the scaling
factors C1, C3 and C4 defined above, where φ = φ(x) and
φ̇, φ̈ are the first and second derivatives with respect to x:

Tm(x) = Tl(φ) +
1

2

dJ(φ)

dφ

1

C3

(
φ̇

C4.C1

)2

+ J(φ)
φ̈

C2
4 .C1

.

(10)
This new system equation ensures the system dynamics

are equally scaled and the minima are not altered.

C. Constraints

Concerning the constraints, the mechanism’s start point
A and endpoint B are assumed to be defined by the ma-
chine builder and process-related tasks. Moreover, as PTP
movements are covered, the velocity φ̇ and acceleration φ̈
are assumed to be zero in the start and endpoint. Thus, with
respect to Fig. 5, the following six constraints need to be
incorporated in the trajectory formulation:

φ(−1) = −1 , φ̇(−1) = 0 , φ̈(−1) = 0,

φ(1) = 1 , φ̇(1) = 0 , φ̈(1) = 0.
(11)

Referring to (9), and by incorporating the trajectory
constraints, the lower degree coefficients [p0, ..., p5]T can
be written as a function of the remaining coefficients
[p6, ..., pn]T , such that n− 5 degrees of freedom (DOF) are
kept available for the optimization algorithm [20]. Thus, the
final position profile is solely determined by the optimization
parameter vector o = [p6, ..., pn]T .



D. Objective

Once the rescaled position profile (9) and system dynamics
(10) are defined, a suitable objective function can be intro-
duced. In this paper, a torque based approach is selected
in which the root mean square (RMS) torque Trms (12) is
minimized in order to reduce joule losses and increase energy
efficiency:

Trms =

√
1

T

∫ tB

tA

Tm(t)
2

dt =

√
1

T

∫ 1

−1

Tm(x)
2

dx. (12)

Note that determining the objective (12) on the original (1)
and rescaled (10) torque equation yields the same results, due
to the scaling factors used.

As the model is solely based on the mechanism dynamics,
this torque based method has the advantage that it does not
require any knowledge about the motor dynamics and related
model constants [22], which are often not accurately known.
Yet, they can be effectively employed for the envisaged high-
dynamical systems where inertial loads are predominant [22].

Since a closed mathematical description of the torque
equation (10) is obtained, the integral (12) can be calculated
through an analytic integration. This approach yields much
better results in terms of execution time, compared to a nu-
merical integration procedure [15]. Moreover, the complete
objective function is composed within the symbolic toolbox
of the MATLAB environment allowing a very fast evaluation
of the objective, which benefits the optimization time even
more.

E. Optimization Algorithm

As an analytic description of the objective function is
constructed, it is possible to select an optimization algorithm
which exploits gradient information and is computationally
superior to heuristic approaches [6]. As illustrated in Fig. 6,
due to the use of orthogonal Chebyshev polynomials for the
position profile φ(x), the trajectory optimization problem for
this application is conditioned in a way that the probability
of converging to a local minimum is diminished.

Fig. 6. Objective function of a cheb7 position profile with 2 DOF (p6 and
p7).

Therefore, the resulting constrained nonlinear optimiza-
tion problem is practically solved offline using the fminunc

function within MATLAB. In this case, fminunc uses a
BFGS (Broyden–Fletcher–Goldfarb–Shanno) quasi-Newton
method, which represents the state-of-the-art in nonlinear
programming and guarantees superlinear convergence [11].

The selection of the starting point for this iterative method
has a major impact on the optimization result, especially
when it is chosen arbitrarily [18]. The use of the Chebyshev
basis Ti(x) in representation (9) allows to initialize the
optimization parameter vector at zero for the following rea-
son. Under very mild assumptions on the trajectory function
φ(x), one knows that the coefficients in its Chebyshev series
expansion converge to zero [25]. We can safely assume some
similar behavior for the coefficients pi in (9).

At last, the optimized trajectory φ∗(x) and torque profile
T ∗
m(x) are rescaled to the original task constraints, i.e., θ∗(t)

and T ∗
m(t), so that they can be implemented in the motor

drives and compared with other approaches which do not
use any rescaling.

IV. RESULTS

In order to assess the performance of the proposed opti-
mization approach, a set of optimizations has been performed
on the industrial pick-and-place unit depicted in Fig. 2. The
mechanism is required to move between its start position
θA of 0◦ and end position θB of 173.6◦ and has a motion
time ∆t of 73.5ms. A fifth-degree polynomial is taken as
the reference motion path for comparison purposes, hereafter
referred to as poly5, which is the uniquely defined RMS jerk-
optimal trajectory [22].

In Table I, the RMS torque Trms, optimization solve
times tsol, and energy savings are presented. The results are
compared with the optimal trajectory achieved in [21], which
is a standard 17th-degree polynomial optimized with GA,
referred to as poly17.

TABLE I
SAVING POTENTIAL ACHIEVED WITH CHEBYSHEV POLYNOMIALS.

Trajectory Trms [Nm] Savings [%] tsol [s]
poly5 22.64 - -
poly17 [21] 13.94 -38.4 500
cheb7 13.94 -38.6 0.07
cheb9 12.61 -44.3 25.9
cheb13 12.44 -45.1 6838

For example, when a Chebyshev polynomial with degree
n = 7 is selected (cheb7), the proposed method already
outperforms the results from [21] (poly17) by achieving
similar energy savings, yet in a fraction of the computing
time. The best results are obtained with a 13th degree
Chebyshev polynomial (cheb13) where energy saving of
−45% are reported. Thus, having an extra savings potential
of 6.6%. However, due to the higher degree n, construction of
the objective function is more time-consuming, which could
hamper the applicability.

Therefore, also the results of the cheb9 trajectory are
depicted, which turns out to be the convergence point and
the optimal trade-off between energy savings and calculation



time. Nevertheless, an additional energy reduction of 5.9%
is found in a minimal optimization time.

At last, Fig. 7, shows the optimized position θ∗(t) and
torque T ∗

m(t) profiles obtained when minimizing the RMS
torque Trms. It should be noticed that small variations in
the trajectory can lead to very diverse torque profiles with
very different energy demands, illustrating the importance
of trajectory optimization even more. What can be clearly
seen in this figure is that while the optimization is focused
on minimizing the RMS torque Trms and energy losses, the
maximum torque Tmax decreases as well, improving the life
span of the machine.

Fig. 7. Optimised position θ∗(t) and torque T ∗
m(t) profiles.

V. CONCLUSIONS

This study proposes a novel approach for trajectory op-
timization of PTP motions with Chebyshev polynomials.
At first, system properties have been extracted with CAD
motion simulations and converted into closed mathematical
descriptions using polynomial interpolation. Subsequently,
the trajectory is defined using Chebyshev polynomials and
the system equation is rescaled accordingly. The latter en-
ables the application of a fast gradient-based quasi-newton
optimization algorithm. Finally, the numerical optimization
results have been considered and compared with recent
trajectory optimization results from [21].

The results clearly show that the proposed method out-
performs previous trajectory optimization approaches and
reveals an extra energy-saving potential of up to 6.7%.
Moreover, due to the analytic construction of the objective
and gradient-based optimization, the optimization time is
significantly reduced with 94.8%, which benefits the applica-
bility of the method and could allow real-time optimization
of the trajectory.
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