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Abstract. The most stable formula for a rational interpolant for use on a finite interval is the barycentric form [1, 2]. A
simple choice of the barycentric weights ensures the absence of (unwanted) poles on the real line [3]. In [4] we indicate that a
more refined choice of the weights in barycentric rational interpolation can guarantee comonotonicity and coconvexity of the
rational interpolant in addition to a polefree region of interest.
In this presentation we generalize the above to the multivariate case. We use a product-like form of univariate barycentric
rational interpolants and indicate how the location of the poles and the shape of the function can be controlled. This
functionality is of importance in the construction of mathematical models that need to express a certain trend, such as in
probability distributions, economics, population dynamics, tumor growth models etc.

Keywords: rational function, multivariate, interpolation, shape control, surface
PACS: 65D05, 41A20, 41A29, 41A63

BARYCENTRIC RATIONAL INTERPOLATION

Given n+1 mutually distinct points x0, . . . ,xn and function values f0, . . . , fn, the rational functions

rn(x) =

n

∑
i=0

fi

wi

(x− xi)
n

∑
i=0

wi

(x− xi)

, wi 6= 0 (1)

interpolate the values fi at the points xi for any nonzero weights wi, in other words rn(xi) = fi. Hence, with respect

to interpolation of the given data, the function rn(x) when represented as in (1), is immune to rounding errors in the

computation of the coefficients. If we denote

ℓ(x) = (x− x0) · · ·(x− xn)

ℓi(x) = ℓ(x)/(x− xi),

then rn(x) can be written as rn(x) = pn(x)/qn(x) with

pn(x) =
n

∑
i=0

fiwiℓi(x)

qn(x) =
n

∑
i=0

wiℓi(x).

Hence it is easy to see that the degree in numerator and denominator of rn(x) is at most n. A necessary condition for

the barycentric weights to satisfy when rn(x) is polefree in [x0,xn] is [1]

wiwi+1 < 0, i = 0, . . . ,n−1.

Making use of Descartes’ rule of signs or a Lorentz representation of qn(x) [5] we can make rn(x) polefree on the

positive real line or in an interval [a,b] respectively. By balancing the weights wi as in [3] we can make rn(x) polefree

on the entire real line.
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A rational function of the form (1) clearly does not deliver the minimal degree solution of the rational interpolation

problem. There are n+1 additional degrees of freedom in the barycentric weights w0, . . . ,wn. One way to make good

use of these is by imposing some shape conditions on rn(x) [4]. Another way is to add conditions to obtain the minimal

degree solution [6, 1, 7].

In the next sections we show how the above can be generalized to the multivariate case. We restrict our description

to the bivariate case, without any loss of generality.

MULTIVARIATE BARYCENTRIC INTERPOLATION

Let the points (xi,yi), i = 0, . . . ,n be given in R
2 and the function values fi at these points. The points are assumed

to be mutually distinct, so for j 6= i we have x j 6= xi or y j 6= yi. But the coordinates xi need not be mutually distinct

and neither do the coordinates yi. However, in order to avoid a maze of notations, we assume for simplicity either that

the xi are distinct and likewise for the yi (as in Figure 1), or that we are interpolating a full grid of n+ 1 = (m+ 1)2

datapoints (as in Figure 2). In the more general intermediate situation, where some of the xi or yi coincide, one retains

in the formulas below only the distinct coordinates and this in each variable.

FIGURE 1. Scattered date with n = 8. FIGURE 2. Grid data with m = 2.

The functions

ℓ j(x) =
n

∏
i=0,i6= j

(x− xi)

ℓk(y) =
n

∏
i=0,i6=k

(y− yi)

ℓ jk(x,y) = ℓ j(x)ℓk(y)

satisfy

ℓ jk(xi,yh) = 0, i 6= j or h 6= k.

The multivariate polynomial

n

∑
i=0

fi

ℓii(x,y)

ℓii(xi,yi)
(2)

interpolates the data fi at the points (xi,yi). The functions ℓii(x,y)/ℓii(xi,yi) in (2) are not the lowest degree polynomials

that interpolate zeroes and ones at the n+1 datapoints [8, 9], but they serve our purpose. More generally, for a grid of

(m+1)2 function values f jk at points (x j,yk), the polynomial

m

∑
j,k=0

f jk

ℓ jk(x,y)

ℓ jk(x j,yk)

interpolates the data f jk. However, as explained, we need not have a grid of function values at our disposal.
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The values 1/ℓii(xi,yi) in (2) can be considered as weights in a barycentric formula. It is then easy to see that the

multivariate rational function

rn(x,y) =

n

∑
i=0

fiviwiℓii(x,y)

(

n

∑
i=0

viℓi(x)

)(

n

∑
i=0

wiℓi(y)

) (3)

interpolates the data fi at the points (xi,yi) for whatever nonzero values for the weights vi and wi. Again (3) does

not constitute the minimal degree multivariate rational interpolant. Additional conditions can be imposed on the

barycentric weights vi and wi. Also, more generally, the rational function

m

∑
j,k=0

f jkv jwkℓ jk(x,y)

(

n

∑
i=0

viℓi(x)

)(

n

∑
i=0

wiℓi(y)

)

interpolates a grid of (m+1)2 values f jk at points (x j,yk).
It is easy to choose the weights vi and wi such that the rational function rn(x,y) does not have poles in a specified

interval or in R
2. The following lemma takes care of that.

Let the orderings κ(i) and λ (i) of the indices 0, . . . ,n be such that xκ(0) < xκ(1) < .. . < xκ(n) and yλ (0) < yλ (1) <
.. . < yλ (n). In the case of a grid of datapoints n needs to be replaced by m.

Lemma 1. Let vκ(i) = (−1)κ(i)νi and wλ (i) = (−1)λ (i)ωi with νi > 0 and ωi > 0. If for a < xκ(0),b > xκ(n),c <
yλ (0),d > yλ (n) we have

νi−1

b− xκ(i−1)
<

νi

b− xκ(i)
i = 1, . . . ,n

νi

xκ(i)−a
>

νi+1

xκ(i+1)−a
, i = 0, . . . ,n−1

ωi−1

d − yλ (i−1)
<

ωi

d − yλ (i)
i = 1, . . . ,n

ωi

yλ (i)− c
>

ωi+1

yλ (i+1)− c
, i = 0, . . . ,n−1

(4)

then rn(x,y) given by (3) does not have poles in (a,b)× (c,d). With a = xκ(0),b = xκ(n),c = yλ (0),d = yλ (n) the

conditions (4) need only be satisfied for i = 1, . . . ,n−1.

Proof. It is clear that the denominator of rn(x,y) can only have zeroes of the form x = α or y = β . We show that such

zeroes are excluded in the region of interest by proving that the factor in x and that in y in the denominator of (3) are

zerofree in (a,b) and (c,d) respectively. To do so we use an idea similar to the one in [3]. Because the xi and the yi are

assumed mutually distinct to simplify the notation (otherwise it is just a matter of keeping track which and how many

distinct coordinates xi and yi we have), we can denote

ℓ(x,y) =
n

∏
i=0

(x− xi)(y− yi)

qn(x,y) = ℓ(x,y)

(

n

∑
i=0

vi

x− xi

)(

n

∑
i=0

wi

y− yi

)

.

Numerator and denominator of (3) can be rewritten as

rn(x,y) =

ℓ(x,y)
n

∑
i=0

fiviwi

(x− xi)(y− yi)

ℓ(x,y)

(

n

∑
i=0

vi

x− xi

)(

n

∑
i=0

wi

y− yi

) .
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With the interpolation points (xi,yi) we associate open intervals Ii = (xκ(i−1),xκ(i)) and Hi = (yλ (i−1),yλ (i)) where we

put xκ(−1) = yλ (−1) =−∞ and xκ(n+1) = yλ (n+1) =+∞. Then for (x,y) ∈ I j ×Hk we can write

qn(x,y) = ℓ(x,y)(r(x)+ s(x))(u(y)+ v(y))

where

ri(x) =

{

0, x < xκ(i)

vκ(i)/(x− xκ(i)), x > xκ(i)

si(x) =

{

vκ(i)/(x− xκ(i)), x < xκ(i)

0, x > xκ(i)

r(x) =
j−1

∑
i=0

ri(x), s(x) =
n

∑
i= j

si(x).

and

ui(y) =

{

0, y < yλ (i)

wλ (i)/(y− yλ (i)), y > yλ (i)

vi(y) =

{

wλ (i)/(y− yλ (i)), y < yλ (i)

0, y > yλ (i)

u(y) =
k−1

∑
i=0

ui(y), v(y) =
n

∑
i=k

vi(y).

If the weights vi and wi are such that for x ∈ I j, j = 1, . . . ,n and y ∈ Hk,k = 1, . . . ,n we have

|ri(x)|> |ri−1(x)|, i = 1, . . . , j−1

|si(x)|> |si+1(x)|, i = j, . . . ,n−1,

|ui(y)|> |ui−1(y)|, i = 1, . . . ,k−1

|vi(y)|> |vi+1(y)|, i = k, . . . ,n−1,

(5)

then the signs of both r(x) and s(x) are that of (−1)κ( j−1) and the signs of both u(y) and v(y) are that of (−1)λ (k−1).

This can be seen by summing r(x) and u(y) from 0 to j−1 and k−1 respectively and summing s(x) and v(y) from n

to j and k respectively. So r(x)+ s(x) only changes sign at each xκ(i), as does ℓ(x,y), and consequently qn(x,y) does

not change sign. The same is true for u(y)+ v(y). Hence both factors in qn(x,y) are zerofree in (a,b)× (c,d). Making

use of the fact that the ri(x),ui(y) and si(x),vi(y) are hyperbola and that their vertical asymptotes are ordered since

xκ(0) < xκ(1) < .. . < xκ(n) and yλ (0) < yλ (1) < .. . < yλ (n), the conditions (5) are satisfied if with vi = (−1)κ(i)νi and

wi = (−1)λ (i)ωi the conditions (4) are satisfied.

It is obvious that the same property holds for the rational interpolant on a grid of values because its denominator has

the same form.

The choice to take both νi and ωi nonzero also guarantees that rn(x,y) is always defined and finite in (a,b)× (c,d).
The denominator does not have zeroes in (a,b)× (c,d) and hence numerator and denominator of rn(x,y) cannot have

common zeroes in (a,b)× (c,d). Consequently the occurrence of so-called unattainable interpolation points [10] is

impossible.

Let us illustrate the above with some graphs of functions rn(x,y) where the different weights vi and wi satisfy (4). It

is clear from these graphical illustrations that there is still an ample choice of interpolants, each displaying a different

shape. In the following section we indicate the possibilities for further control of the shape.

Given here are values fkℓ at points (xk,yℓ) on a 3×3 grid with x0 =−3,x1 = 1,x2 = 3,y0 =−3,y1 =−0.5,y2 = 3.

The function values fkℓ (in matrix notation where the row index is k+1 and the column index ℓ+1) are




0 −0.3 0

0.2 2.5 −0.2
0 0 0.3



 .
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For vi and wi given by v0 = 0.4950,v1 = −1.000,v2 = 0.4288,w0 = 0.4287,w1 = −1.000,w2 = 0.4603 the rational

interpolant is shown in Figure 3. Another look and feel is obtained by choosing v0 = 1.000,v1 =−0.3402,v2 = 0.4555

and w0 = 1.000,w1 =−5.9536,w2 = 14.0084 as in Figure 4.
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FIGURE 3. r8(x,y).
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FIGURE 4. r8(x,y).

DERIVATIVES OF THE BARYCENTRIC INTERPOLANT

The representation (3) takes the form of the univariate barycentric formula (1) by introducing either

Fi = rn(xi,y) =
fiwiℓi(y)
n

∑
i=0

wiℓi(y)

or

Gi = rn(x,yi) =
fiviℓi(x)
n

∑
i=0

viℓi(x)

.

The same can be done on a grid of (m+1)2 data. Then regarded as a function in x, (3) takes the form

n

∑
i=0

Fiviℓi(x)

n

∑
i=0

viℓi(x)

and as a function in y,
n

∑
i=0

Giwiℓi(y)

n

∑
i=0

wiℓi(y)

.

Consequently we can use the formulas for the derivatives given in [1] to obtain the partial derivatives

∂ rn(x,y)

∂x
=











































n

∑
i=0

rn(x,y)− rn(xi,y)

x− xi

vi

x− xi

n

∑
i=0

vi

x− xi

, x 6= x j, j = 0, . . . ,n

−







n

∑
i=0,i6= j

vi

rn(x j,y)− rn(xi,y)

x− xi







v j
, x = x j,
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∂ rn(x,y)

∂y
=











































n

∑
i=0

rn(x,y)− rn(x,yi)

y− yi

wi

y− yi

n

∑
i=0

wi

y− yi

, y 6= y j, j = 0, . . . ,n

−







n

∑
i=0,i6= j

wi

rn(x,y j)− rn(x,yi)

y− yi







w j
, y = y j,

These partial derivatives can be combined into directional derivatives or used for the computation of higher derivatives.

Then following the ideas of [4] conditions can be imposed to control the shape of the polefree barycentric rational

interpolant. We conclude with the following example.

We take the same data as above. It is easy to see from Figure 4 that for y = 3 the rational interpolant is not

convex. Imagine we want it to be convex along that stretch. Then using the technique from [4] for the partial

derivative ∂ r8(x,3)/∂x we find that the weights vi need to be changed to (for instance) v0 = 1,v1 =−1.8,v2 = 1. We

emphasize that the change is computed such that it preserves the guarantee of a polefree interpolant. The result of

the change is shown in Figure 5 and in Figure 6 one finds the projection r8(x,3) before and after the change of weights.

−4

−2

0

2

4

−2

0

2

0

1

2

xy

FIGURE 5. Convex r8(x,y).
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FIGURE 6. Before and after.
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