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Abstract

The exponential analysis of 2n uniformly collected samples from an n-
term exponential sum, is equivalent to the reconstruction of a rational
function of degree n − 1 over n. The latter is by computing the Padé
approximant of the z-transform of the sequence of samples.
In practice, the samples are often noisy and 2n is replaced by N >
2ν with ν > n, leading to a least squares computation of the Padé
approximant of degree ν − 1 over ν.
We show that the latter is a perturbed version of the one of degree
n−1 over n and that the n exponential base terms can still be retrieved
reliably. This has remained an open problem for many years, despite the
fact that the least squares computation was used in most applications.
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1 Introduction

Padé approximation is a rational approximation method that, among other
things, can reconstruct a rational function F (z) of degree m in the numerator
and degree n in the denominator from its first m + n + 1 Taylor series coef-
ficients. In practical situations, where the Taylor series coefficients stem from
measurements or earlier computations, one needs to analyze and understand
the effect of such a perturbation on the true mathematical coefficients.

Let us introduce the notation [µ/ν]F for the Padé approximant of degree
µ over ν to a given function F (z). In case m = n− 1, it is proved in [1, 2] that
a random perturbation of O(ε) with ε� 1 to the first µ+ ν + 1 Taylor series
coefficients with µ−m = ν − n = k > 0, disturbs the Padé approximants of a
rational function F (z) of degree m over n in the following way. The procedure
adds k zeroes and poles to the numerator and denominator polynomials of
F (z), with the additional factors in the numerator of [µ/ν]F almost cancelling
the additional factors in its denominator. This near-cancelling instead of the
exact cancelling of the additional factors is caused by the presence of someO(ε)
quantities in numerator and denominator of [µ/ν]F . So the process behaves
quite as expected when approximating such a rational function F (z) by a
Padé approximant [µ/ν]F of too high degree. Another robustness result is
formulated in [3] for a variant of Padé approximation, computed from the
same first µ + ν + 1 Taylor coefficients, but with the aim to filter out these
disturbances.

A different approach when dealing with perturbations is to switch to the
computation of the Padé approximant in some least squares sense. In [4] a
total-least-squares style approach to the problem statement is probably pre-
sented for the first time. In [5] the Padé denominator is computed by solving
the linear system of equations defining its coefficients in the least squares sense,
while the numerator coefficients are still computed from the denominator coef-
ficients in the traditional way. In exponential analysis though, it is standard
to compute both numerator and denominator in a least squares sense, as is
done here. In Section 2 we summarize what the reader needs to know about
Padé approximants and their connection to the exponential analysis problem
statement. In Section 3 we further analyze in detail, for the first time, the
effect of an O(ε) perturbation on the full least squares problem statement. In
Section 4 we examine how sensitive the rooting of the denominator polynomial
is in the considered least squares setting and which parameters influence this
sensitivity.
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2 Exponential analysis and Padé approximation

2.1 Exponential analysis

Let the signal f(x) be given by

f(x) =

n∑
j=1

αj exp (φjx) ,

where the coefficients αj ∈ C and exponents φj ∈ C are unknown parameters.
Note that in general the number of exponential terms n, called the sparsity,
is also unknown. The objective is to obtain the values of all these unknown
parameters from a limited number of equidistant samples

fk = f(k∆) =

n∑
j=1

αj exp (φjk∆) =

n∑
j=1

αjΦ
k
j , k = 0, 1, . . . (1)

with sampling step ∆ 6= 0. Here we introduce the notation Φj = exp (φj∆),
j = 1, . . . , n, which are called the base terms. Hence, the exponential analysis
problem consists in finding the coefficients αj and base terms Φj such that
the non-linear interpolation conditions (1) are satisfied. Under the assumption
that |= (φj)| < π/ |∆|, one then easily retrieves the exponent values φj from
the base terms Φj .

Already in 1795, it was shown by de Prony that only 2n equidistant samples
are required to solve the exponential analysis problem if the sparsity n is
known. In a more modern version the interpolation problem is expressed as
a generalized eigenvalue problem. Let the samples fk be the elements of the
square Hankel matrices

H(s)
n =


fs fs+1 . . . fs+n−1

fs+1 fs+2 . . . fs+n
...

...
...

fs+n−1 fs+n . . . fs+2n−2

 , s ≥ 0.

These matrices factorise as [6]

H(s)
n = VnDαD

s
ΦV

T
n ,

where the matrices Dα and DΦ are respectively the diagonal matrices
diag(α1, . . . , αn) and diag(Φ1, . . . ,Φn), and where Vn is the Vandermonde
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matrix 
1 . . . 1

Φ1 . . . Φn
...

...
Φn−1

1 . . . Φn−1
n

 ,

with the base terms Φj as the generators. From this factorisation we obtain

H(1)
n − λH(0)

n = VnDα (DΦ − λIn)V Tn ,

which means that the base terms Φj are obtained as the generalized eigenvalues
λj of the generalized eigenvalue problem

H(1)
n vj = λjH

(0)
n vj . (2)

After the base terms Φj are recovered, the coefficients αj are computed from
the linear interpolation conditions (1), which translate to the Vandermonde
structured linear system

1 . . . 1
Φ1 . . . Φn
...

...
Φ2n−1

1 . . . Φ2n−1
n



α1

α2

...
αn

 =


f0

f1

...
f2n−1

 .

In an exact noisefree context the first n are linearly independent, thus the
remaining n equations are not required. In a noisy setting, it is advised to
solve the linear system in a least-squares sense for all available interpolation
conditions.

2.2 Padé approximation

A Padé approximant is a rational function of which the Taylor series expan-
sion coincides with a given formal power series up to a specified order. More
formally, given

F (z) =

∞∑
k=0

ckz
k,

with c0 6= 0, the Padé approximation problem consists in finding the
polynomials

p(z) =

m∑
k=0

ajz
k, q(z) =

n∑
k=0

bjz
k
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such that

F (z)− p(z)

q(z)
= O

(
zm+n+1

)
. (3)

More commonly, the linearised version

F (z)q(z)− p(z) = O
(
zm+n+1

)
is used instead. Since the approximating function p(z)/q(z) is a rational func-
tion, there is a degree of freedom in the representation of p(z) and q(z). In
general, the Padé approximant is defined as the irreducible rational function
p(z)/q(z) which satisfies (3) and for which q(0) = 1. This rational approximant
is then denoted as [m/n]F .

One can represent this Padé approximant using determinant formulas. Let
F`(z) denote the partial sum

F`(z) =
∑̀
k=0

ckz
k,

with the convention that F`(z) = 0 if ` < 0. Then the Padé approximant is
the irreducible form of the rational function p(z)/q(z) where

q(z) =
1

D

∣∣∣∣∣∣∣∣∣
1 z . . . zn

cm+1

... Dm,n

cm+n

∣∣∣∣∣∣∣∣∣ , p(z) =
1

D

∣∣∣∣∣∣∣∣∣
Fm(z) zFm−1(z) . . . znFm−n(z)
cm+1

... Dm,n

cm+n

∣∣∣∣∣∣∣∣∣ ,
(4)

under the condition that

D = |Dm,n| =

∣∣∣∣∣∣∣∣∣
cm cm−1 . . . cm−n+1

cm+1 cm . . . cm−n+1

...
...

...
cm+n−1 cm+n . . . cm

∣∣∣∣∣∣∣∣∣ 6= 0.

2.3 Connection

At first sight it seems that exponential analysis and Padé approximation are
completely different subjects. They are, however, most certainly connected [7–

9]. Instead of arranging the samples fk in the Hankel matrices H
(s)
n , one can

use them as coefficients in the formal power series

F (z) =

∞∑
k=0

fkz
k.
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When plugging in expression (1) for the samples fk , we obtain

F (z) =

∞∑
k=0

fkz
k =

∞∑
k=0

(
n∑
j=1

αjΦ
k
j

)
zk =

n∑
j=1

αj

∞∑
k=0

(Φjz)
k

=

n∑
j=1

αj
1− Φjz

=
πn−1(z)

n∏
j=1

(1− Φjz)
. (5)

Hence, the power series F (z) stems from a rational function of degree n− 1 in
the numerator and degree n in the denominator. Due to the consistency prop-
erty of Padé approximants, we find that the Padé approximant [n − 1/n]F =
F (z) because it reconstructs rational functions of degree n−1 over n. In addi-
tion, the base terms Φj are also obtained as the reciprocals of the poles of the
Padé approximant [n − 1/n]F . Subsequently, the coefficients αj are obtained
from the partial fraction decomposition of the same Padé approximant.

The generalized eigenvalue problem formulation (2) of exponential analysis
and the determinant formulas (4) of the Padé approximant are also closely
connected. Since the poles of the Padé approximant [n − 1/n]F equal the
reciprocals of the base terms Φj , we consider the reverse of the generalized
eigenvalue problem (2),

H(0)
n vj =

1

λj
H(1)
n vj .

Solving this reverse eigenvalue problem is equivalent to finding the zeroes of

the characteristic polynomial which is given by |H(0)
n − zH(1)

n |, which equals∣∣∣∣∣∣∣∣∣
f0 − zf1 f1 − zf2 . . . fn−1 − zfn
f1 − zf2 f2 − zf3 . . . fn − zfn+1

...
...

...
fn−1 − zfn fn − zfn+1 . . . f2n−2 − zf2n−1

∣∣∣∣∣∣∣∣∣ (6)

Note that the polynomial given in (6) is the reverse of the so-called Prony
polynomial [10, p. 458].

When splitting the columns, performing the proper column subtractions,
taking out factors z and flipping all the columns from left to right, we obtain

±

∣∣∣∣∣∣∣∣∣
fn−1 . . . f1 f0

fn . . . f2 f1

...
...

...
f2n−2 . . . fn fn−1

∣∣∣∣∣∣∣∣∣± (−1)z

∣∣∣∣∣∣∣∣∣
fn fn−2 . . . f0

fn+1 fn−1 . . . f1

...
...

...
f2n−2 f2n−4 . . . fn−1

∣∣∣∣∣∣∣∣∣± . . .



Springer Nature 2021 LATEX template

Robustness of the least squares Padé denominator 7

· · · ± (−1)nzn

∣∣∣∣∣∣∣∣∣
fn . . . f2 f1

fn+1 . . . f3 f2

...
...

...
f2n−1 . . . fn+1 fn

∣∣∣∣∣∣∣∣∣ .
This expression is also obtained when expanding, along the first row, the
determinant

±

∣∣∣∣∣∣∣∣∣
1 z . . . zn

fn fn−1 . . . f0

...
...

...
f2n−1 f2n−2 . . . fn−1

∣∣∣∣∣∣∣∣∣ ,
which equals ±Dq(z) for m = n − 1 in (4). Hence, computing the zeroes
of the Padé denominator and solving the generalized eigenvalue problem are
mathematically equivalent.

3 Least squares computation

The above manipulation of the determinant expressions proves to be very
useful in studying the effect of noise on the computation of the base terms Φj
in the exponential analysis problem. We start from what is known about the
effect of noise in the Padé approximation of rational functions such as (5). In
[2, p. 292] it is shown that for the perturbed power series

F̃ (z) =

∞∑
k=0

(fk + εrk) zk,

where the rk are random noise terms following some distribution law and
ε� 1, the Padé approximant [ν − 1/ν]F̃ for ν ≥ n, is expressed as

[ν − 1/ν]F̃ =
p(z)

q(z)
=

πn−1(z)Kν−n(z) +O(εPν−1(z))
n∏
j=1

(1− Φjz)Kν−n(z) +O(εPν(z))
, q(0) = 1, (7)

where Kν−n(z) is a polynomial of degree ν−n of which the coefficients depend
on the random noise terms rk and where the notation O(εPm(z)) represents a
finite sum of the form

εpm,1(z) + ε2pm,2(z) + ε3pm,3(z) + . . .+ εspm,s(z), deg(pm,k(z)) ≤ m.

Because of the connection between Padé approximation and exponential anal-
ysis, the denominator of (7) allows to study the computation of the base terms
Φj from noisy data. Formula (7) shows that the coefficients of the denominator
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polynomial lie at a distance of order ε from those of a polynomial of which n
zeroes are the reciprocals of the base terms Φj and the remaining ν−n zeroes
are dictated by the noise terms.

So the characteristic polynomial of the generalized eigenvalue problem (2)
for ν ≥ n terms lies at a distance of order ε from the polynomial with the
reciprocals of the base terms Φj as n of its zeroes and the remaining ν−n roots
dictated by the noise. Now, the question remains if the same holds true when an
overdetermined exponential analysis problem is considered. By overdetermined
we mean an exponential analysis problem of sparsity n for which more than
the minimally required 2n samples are collected and used for the computation
of the unknown parameters.

Let f0, f1, . . . , fN−1, for N ≥ 2n be the number of collected samples for the
exponential analysis problem. Let us arrange these samples in the rectangular
Hankel matrices

H(s)
m,n =


fs fs+1 . . . fs+n−1

fs+1 fs+2 . . . fs+n
...

...
...

fs+m−1 fs+ . . . fs+m+n−2

 ,

m ≥ n, 0 ≤ s ≤ N −m− n+ 1.

Similar to their square counterparts, these Hankel matrices factorise as

H(s)
m,n = VmDαD

s
ΦV

T
n ,

where the subscript of the Vandermonde matrices denotes the number of

rows and where the number of columns equals n, i.e. V` =
(
Φi−1
j

)`,n
i=1,j=1

.

Consequently, the eigenvalues of the overdetermined generalized eigenvalue
problem

H(1)
m,nvj = λjH

(0)
m,nvj (8)

are once again the base terms Φj . The most natural way to interpret such an
overdetermined eigenvalue problem is based on the pseudo-inverse, which is
used to transform the rectangular problem (8) to a square one. Assuming that

H
(0)
m,n has rank n, we let

(
H(0)
m,n

)†
=
((
H(0)
m,n

)∗
H(0)
m,n

)−1 (
H(0)
m,n

)∗
denotes the pseudo-inverse of the matrix H

(0)
m,n and the superscript ∗ the conju-

gate transpose of the same matrix. Then the rectangular generalized eigenvalue
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problem can be reformulated as the square generalized eigenvalue problem(
H(0)
m,n

)∗
H(1)
m,nvj = λj

(
H(0)
m,n

)∗
H(0)
m,nvj (9)

or its reverse (
H(0)
m,n

)∗
H(0)
m,nvj =

1

λj

(
H(0)
m,n

)∗
H(1)
m,nvj . (10)

When the number of terms is overestimated by ν ≥ n, we assume that the

pseudo-inverse of the matrix H
(0)
m,ν still exists due to the randomness of the

noise. The objective is now to show that the characteristic polynomial corre-
sponding to the generalized eigenvalue problem (10) with n overestimated by
ν, so the problem (

H(0)
m,ν

)∗
H(0)
m,νvj =

1

λj

(
H(0)
m,ν

)∗
H(1)
m,νvj . (11)

is also of the form

n∏
j=1

(1− Φjz)Kν−n(z) +O(εPν(z)),

where again Kν−n(z) depends on the noise terms added to the samples fk.
We first take a detailed look at the case of only one base term, i.e. n = 1 and
afterwards discuss how to tackle the general case.

3.1 Case of one base term

When n = 1, the samples equal

fk = αΦk + εrk, k = 0, . . . , N − 1

and the m× ν Hankel matrices contain the elements(
H(0)
m,ν

)
i,j

= αΦi+j−2 + εri+j−2,
(
H(1)
m,ν

)
i,j

= αΦi+j−1 + εri+j−1,

where ν ≥ n and m = N − ν ≥ ν. Then the elements in the matrix on the
left-hand-side of the generalized eigenvalue problem (11) are given by

((
H(0)
m,ν

)∗
H(0)
m,ν

)
i,j

=

m∑
k=1

(
H

(0)

m,ν

)
k,i

(
H(0)
m,ν

)
k,j

=

m∑
k=1

(
αΦ

i+k−2
+ εri+k−2

) (
αΦj+k−2 + εrj+k−2

)
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= AΦ
i−1

Φj−1 + ε
(
BjΦ

i−1
+BiΦ

j−1
)

+ ε2Ci,j ,

where x denotes the complex conjugate of x and

A = |α|2
m∑
k=1

|Φ|2k−2
, Bj = α

m∑
k=1

Φk−1rj+k−2, Ci,j =

m∑
k=1

ri+k−2rj+k−2.

Analogously, we find((
H(0)
m,ν

)∗
H(1)
m,ν

)
i,j

= AΦ
i−1

Φj + ε
(
Bj+1Φ

i−1
+BiΦ

j
)

+ ε2Ci,j+1.

By defining

bj(z) = Bj − zBj+1, ci,j(z) = Ci,j − zCi,j+1,

we find that((
H(0)
m,ν

)∗
H(0)
m,ν − z

(
H(0)
m,ν

)∗
H(1)
m,ν

)
i,j

= AΦ
i−1

Φj−1(1− zΦ) + εbj(z)Φ
i−1

+ εBiΦ
j−1(1− zΦ) + ε2ci,j(z).

Furthermore, let

gj(z) = bj+1(z)− Φbj(z), hi,j(z) = ci,j+1(z)− Φci,j(z).

By subtracting the j-th column multiplied by Φ from the (j + 1)-th column,
for j = 1, . . . , ν − 1, and subsequently splitting the first column, we obtain for
the characteristic polynomial of (11) the expression

εν−1(1− zΦ)

∣∣∣∣∣∣
A+εB1 g1(z)+εh1,1(z) ... gν−1(z)+εh1,ν−1(z)

...
...

...
AΦ

ν−1
+εB1 Φ

ν−1
g1(z)+εhν,1(z) ... Φ

ν−1
gν−1(z)+εhν,ν−1(z)

∣∣∣∣∣∣ (12)

+ εν

∣∣∣∣∣∣
b1(z)+εc1,1(z) g1(z)+εh1,1(z) ... gν−1(z)+εh1,ν−1(z)

...
...

...
Φ
ν−1

b1(z)+εcν,1(z) Φ
ν−1

g1(z)+εhν,1(z) ... Φ
ν−1

gν−1(z)+εhν,ν−1(z)

∣∣∣∣∣∣ . (13)

In the following, the determinant expressions in (12) and (13) are handled
separately. For (12) we subtract the i-th row multiplied by Φ from the (i+1)-th
row and then split the first row to rewrite (12) as
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εν−1

∣∣∣∣∣∣∣∣∣
A g1(z) . . . gν−1(z)

B1(1− Φ) s1,1(z) . . . s1,ν−1(z)
...

...
...

B1(1− Φ) sν−1,1(z) . . . sν−1,ν−1(z)

∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(I)

+ εν

∣∣∣∣∣∣∣∣∣
B1 h1,1(z) . . . h1,ν−1(z)

B1(1− Φ) s1,1(z) . . . s1,ν−1(z)
...

...
...

B1(1− Φ) sν−1,1(z) . . . sν−1,ν−1(z)

∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(II)

,

where we denote
si,j(z) = hi+1,j(z)− Φhi,j(z).

The second part (II) of this expression is simplified further by adding row 1
multiplied by Φ to the second row, then adding row 2 multiplied by Φ to the
third row and so on. This process returns

(II) =

∣∣∣∣∣∣∣∣∣
B1 h1,1(z) . . . h1,ν−1(z)
B1 h2,1(z) . . . h2,ν−1(z)
...

...
...

B1 hν,1(z) . . . hν,ν−1(z)

∣∣∣∣∣∣∣∣∣ .
Since gj(z), hi,j(z) and si,j(z) are all polynomials of degree 1, both determi-
nants (I) and (II) are polynomials of degree ν−1. We denote these polynomials

respectively by Kν−1(z) and p
(1)
ν−1(z).

For expression (13) the same steps are repeated to obtain

εν−1

∣∣∣∣∣∣∣∣∣
b1(z) g1(z) . . . gν−1(z)
t1(z) s1,1(z) . . . s1,ν−1(z)

...
...

...
tν−1(z) sν−1,1(z) . . . sν−1,ν−1(z)

∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(III)

+εν

∣∣∣∣∣∣∣∣∣
c1,1(z) h1,1(z) . . . h1,ν−1(z)
c2,1(z) h2,1(z) . . . h2,ν−1(z)

...
...

...
cν,1(z) hν,1(z) . . . hν,ν−1(z)

∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(IV)

,

where
ti(z) = ci+1,1(z)− Φci,j(z).

Both determinants (III) and (IV) are polynomials of degree ν since all involved
functions are polynomials of degree 1. These polynomials are respectively

denoted by p
(2)
ν (z) and p

(3)
ν (z).

By combining the results for (12) and(13), we find for the characteristic
polynomial
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ε2ν−2(1− zΦ)Kν−1(z) + ε2ν−1
(

(1− zΦ)p
(1)
ν−1(z) + p(2)

ν (z)
)

+ ε2νp(3)
ν (z). (14)

We now normalize (14) so that it equals 1 at 0: this means dividing (14)

by
∣∣∣(H(0)

m,ν

)∗
H

(0)
m,ν

∣∣∣. We take the liberty to re-use the notation Kν−1(z) after

normalization (although its coefficients have been touched) in order to not over-

load the already lavish notation. When denoting p
(4)
ν (z) = (1− zΦ)p

(1)
ν−1(z) +

p
(2)
ν (z), we finally obtain the result

q(z) = (1− zΦ)Kν−1(z) + εp(4)
ν (z) + ε2p(3)

ν (z).

Hence, the normalized characteristic polynomial q(z) lies at a distance of order
ε from the polynomial with the reciprocal of the base term Φj as its root, while
the remaining zeroes, of the polynomial Kν−1(z), depend on the random noise
terms rk.

3.2 General case with more base terms

In order to avoid the introduction of unnecessarily complicated notation, the
general case is discussed in less detail. Consider the noisy variant of the multi-
exponential samples in (1):

fk =

n∑
j=1

αjΦ
k
j + εrk, k = 0, . . . , N − 1.

Then for ν ≥ n and m = N − ν ≥ ν, the elements of the Hankel matrices are
given by

(
H(0)
m,ν

)
i,j

=

n∑
`=1

α`Φ
i+j−2
` + εri+j−2,

(
H(1)
m,ν

)
i,j

=

n∑
`=1

α`Φ
i+j−1
` + εri+j−1.

Hence the elements of the matrix product in the left-hand-side of the
generalized eigenvalue problem (11) are
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((
H(0)
m,ν

)∗
H(0)
m,ν

)
i,j

=

m∑
k=1

(
H

(0)

m,ν

)
k,i

(
H(0)
m,ν

)
k,j

=

m∑
k=1

(
n∑
`=1

α`Φ
i+k−2

` + εri+k−2

)(
n∑
`=1

α`Φ
j+k−2
` + εrj+k−2

)

=

m∑
k=1

n∑
`1=1

n∑
`2=1

α`1α`2Φ
i+k−2

`1 Φj+k−2
`2

+O(ε)

=

n∑
`1=1

n∑
`2=1

α`1α`2Φ
i−1

`1 Φj−1
`2

m∑
k=1

Φ
k−1

`1 Φk−1
`2

+O(ε)

=

n∑
`1=1

n∑
`2=1

A`1,`2Φ
i−1

`1 Φj−1
`2

+O(ε),

with

A`1,`2 = α`1α`2

m∑
k=1

Φ
k−1

`1 Φk−1
`2

.

Analogously, we find

((
H(0)
m,ν

)∗
H(1)
m,ν

)
i,j

=

n∑
`1=1

n∑
`2=1

A`1,`2Φ
i−1

`1 Φj`2 +O(ε).

For the elements of the matrix of which the determinant defines the charac-
teristic polynomial linked to (11) we have((
H(0)
m,ν

)∗
H(0)
m,ν − z

(
H(0)
m,ν

)∗
H(1)
m,ν

)
i,j

=

n∑
`1=1

n∑
`2=1

A`1,`2Φ
i−1

`1 Φj−1
`2

(1− zΦ`2) +O(εP1(z))

=

n∑
`2=1

(1− zΦ`2)Φj−1
`2

n∑
`1=1

A`1,`2Φ
i−1

`1 +O(εP1(z))

=

n∑
`=1

B`,iD
(0)
`,j (1− zΦ`) +O(εP1(z)),
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where

B`,i =

n∑
`1=1

A`1,`2Φ
i−1

`1 , D
(0)
`,j = Φj−1

` .

Note that B`,i and D
(0)
`,j are defined separately and not combined into only

one coefficient since they respectively only depend on the row or column of
the element. This distinction is required for the following operations on the
determinant.

The characteristic polynomial is given by

∣∣∣∣∣∣∣∣
n∑̀
=1

B`,1D
(0)
`,1(1−zΦ`)+O(εP1(z))

n∑̀
=1

B`,1D
(0)
`,2(1−zΦ`)+O(εP1(z))

...
...

n∑̀
=1

B`,νD
(0)
`,1(1−zΦ`)+O(εP1(z))

n∑̀
=1

B`,νD
(0)
`,2(1−zΦ`)+O(εP1(z))

...
n∑̀
=1

B`,1D
(0)
`,ν(1−zΦ`)+O(εP1(z))

...
...

n∑̀
=1

B`,νD
(0)
`,ν(1−zΦ`)+O(εP1(z))

∣∣∣∣∣∣∣∣ .

From columns j = 2, . . . , ν we subtract column 1 multiplied by D
(0)
1,j/D

(0)
1,1 to

eliminate the coefficient of the factor (1− zΦ1) in all columns except the first
one. This yields

∣∣∣∣∣∣∣∣
n∑̀
=1

B`,1D
(1)
`,1(1−zΦ`)+O(εP1(z))

n∑̀
=2

B`,1D
(1)
`,2(1−zΦ`)+O(εP1(z))

...
...

n∑̀
=1

B`,νD
(1)
`,1(1−zΦ`)+O(εP1(z))

n∑̀
=2

B`,νD
(1)
`,2(1−zΦ`)+O(εP1(z))

...
n∑̀
=2

B`,1D
(1)
`,ν(1−zΦ`)+O(εP1(z))

...
...

n∑̀
=2

B`,νD
(1)
`,ν(1−zΦ`)+O(εP1(z))

∣∣∣∣∣∣∣∣ ,
where

D
(1)
`,j =


D

(0)
`,1 , j = 1,

D
(0)
`,j −

D
(0)
1,j

D
(0)
1,1

D
(0)
`,1 , j 6= 1.
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Now we subtract column 2 multiplied by D
(0)
2,j/D

(0)
2,2 from the columns j =

1, 3, . . . , ν to eliminate the coefficients of the factor (1− zΦ2). The result is

∣∣∣∣∣∣∣∣∣∣∣

n∑
`=1
6̀=2

B`,1D
(2)
`,1(1−zΦ`)+O(εP1(z))

n∑̀
=2

B`,1D
(2)
`,2(1−zΦ`)+O(εP1(z))

...
...

n∑
`=1
` 6=2

B`,νD
(2)
`,1(1−zΦ`)+O(εP1(z))

n∑̀
=2

B`,νD
(2)
`,2(1−zΦ`)+O(εP1(z))

...
n∑̀
=3

B`,1D
(2)
`,ν(1−zΦ`)+O(εP1(z))

...
...

n∑̀
=3

B`,νD
(2)
`,ν(1−zΦ`)+O(εP1(z))

∣∣∣∣∣∣∣∣ ,
where now

D
(2)
`,j =


D

(1)
`,1 , j = 2,

D
(1)
`,j −

D
(1)
1,j

D
(1)
1,1

D
(1)
`,1 , j 6= 2.

This process is repeated to eliminate the coefficients of the factors (1 − zΦj)
for j = 3, . . . , n which is possible since ν ≥ n. We obtain

∣∣∣∣∣∣
B`,1D

(n)
`,1 (1−zΦ1)+O(εP1(z)) ... B`,1D

(n)
`,n(1−zΦn)+O(εP1(z)

...
...

B`,νD
(n)
`,1 (1−zΦ1)+O(εP1(z)) ... B`,νD

(n)
`,n(1−zΦn)+O(εP1(z))

O(εP1(z)) ... O(εP1(z))

...
...

O(εP1(z)) ... O(εP1(z))

∣∣∣∣∣ .
Splitting the first column and subsequently taking out the constant ε every-
where in the last ν − n columns, results in

εν−n(1− zΦ1)

∣∣∣∣∣∣
B`,1D

(n)
`,1 B`,1D

(n)
`,2 (1−zΦ2)+O(εP1(z)) ...

...
...

B`,νD
(n)
`,1 B`,νD

(n)
`,2 (1−zΦ2)+O(εP1(z)) ...

B`,1D
(n)
`,n(1−zΦn)+O(εP1(z)) O(P1(z)) ... O(P1(z))

...
...

...
B`,νD

(n)
`,n(1−zΦn)+O(εP1(z)) O(P1(z)) ... O(P1(z))

∣∣∣∣∣∣
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+ εν−n+1

∣∣∣∣∣∣
O(P1(z)) B`,1D

(n)
`,2 (1−zΦ2)+O(εP1(z)) ...

...
...

O(P1(z)) B`,νD
(n)
`,2 (1−zΦ2)+O(εP1(z)) ...

B`,1D
(n)
`,n(1−zΦn)+O(εP1(z)) O(P1(z)) ... O(P1(z))

...
...

...
B`,νD

(n)
`,n(1−zΦn)+O(εP1(z)) O(P1(z)) ... O(P1(z))

∣∣∣∣∣∣ .
Since the second term has a higher power of ε we only continue with the first
term. As above, the subsequent columns are split, which finally gives

εν−n
n∏
j=1

(1− zΦj)

∣∣∣∣∣∣
B`,1D

(n)
`,1 B`,1D

(n)
`,2 ... B`,1D

(n)
`,n O(P1(z)) ... O(P1(z))

...
...

...
...

...
B`,νD

(n)
`,1 B`,νD

(n)
`,2 ... B`,νD

(n)
`,n O(P1(z)) ... O(P1(z))

∣∣∣∣∣∣
+O

(
εν−n+1Pν(z)

)
.

Hence, there exists a polynomial Kν−n(z) of degree ν − n such that the
normalized characteristic polynomial takes the form

q(z) =

n∏
j=1

(1− zΦj)Kν−n(z) +O(εPν(z)).

This means that also in the general case, the coefficients of the characteristic
polynomial lie at a distance of order ε from the polynomial with the reciprocals
of the base terms as n of its zeroes and the remaining ν − n roots influenced
by the random noise terms rk.

4 Sensitivity analysis and experiments

In the previous sections we showed that the Padé denominator of degree ν > n,
when computed in a least squares sense from noisy data as in Section 3, is
very similar to the Padé denominator of the classical approximant [ν − 1/ν]F
computed from the first 2ν perturbed Taylor coefficients of F (z) as in [2].
In order to know that, besides the denominator polynomial, also the n base
terms are returned reliably, we look at the sensitivity of the rooting of the least
squares Padé denominator of degree ν > n. This aspect was not discussed in
[1, 2], but we will compute that classical case as well and compare to it.

It is known that polynomial rooting can be a very sensitive problem state-
ment, even irrespective of the algorithm used to compute the roots. Although
we are dealing with ν roots here, only the conditioning of the n authentic base
terms interests us. We disregard the conditioning of the ν − n spurious ones.

In the sequel of this section we can therefore return to the case of n = 1
base term with ν − 1 spurious roots. In the case of only one base term, the
normalized characteristic polynomial which equals the denominator of the least
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squares Padé approximant, takes the form

q(z) = (1− zΦ)Kν−1(z) +O(εPν(z)), q(0) = 1.

With exact data, so for ε = 0, the classical Padé denominator q(z) equals
1− zΦ because of the consistency of the Padé approximation process. With ε
assumed small, we are interested in the sensitivity of the root 1/Φ of Q(z) :=
(1 − zΦ)Kν−1(z) with respect to each of the coefficients of Q(z). Let qj , j =
0, . . . , ν denote the coefficient of zj in Q(z). Then the root sensitivity with
respect to qj is given by∣∣∣∣ ∂z∂qj |z=1/Φ

∣∣∣∣ =

∣∣∣∣−∂Q/∂qj∂Q/∂z
|z=1/Φ

∣∣∣∣ (15)

=

∣∣∣∣ zj

ΦKν−1(z) + (zΦ− 1)K ′ν−1(z)
|z=1/Φ

∣∣∣∣ (16)

=

∣∣∣∣ 1

Φj+1Kν−1(1/Φ)

∣∣∣∣ . (17)

So this sensitivity essentially depends on the location of the base term Φ,
the number of rows m and the number of columns ν in the Hankel matrices,
and the random numbers rj , j = 0, . . . , N − 1 appearing in Kν−1(z). In our
numerical experiments, the latter will follow a complex Gaussian distribution
with mean 0 and variance 1. To illustrate the influence of the former, we
perform 3 experiments illustrating the behaviour of (15), where:

• we vary |Φ| and arg(Φ) while keeping m and ν fixed,
• we fix Φ and vary m and ν, exploring different ratios for m/ν,
• we study the distribution of the sensitivity for fixed Φ, m and ν.

In the Figures 1 and 2 illustrating the sensitivity experiments, the scale of the
z-axis is logarithmic (Briggs). In the Figures 3, 4, 5 and 6 the scale of the y-
axis is not. The value Kν−1(1/Φ) is obtained from the determinant expression
associated with (14).

In our first experiment we choose m = 10 and ν = 5 while varying Φ
within the ring 0.75 < |Φ| < 1.25. This is an important region as many real-life
applications deal with Φ on the unit circle in the complex plane. For each Φ
we run 100 computations of the sensitivity, every time with different random
values rj and display the median of the maximal sensitivity over the various
coefficients qj in Q(z). Observe from Figure 1 that primarily the modulus of
the base term Φ influences the sensitivity, with larger moduli leading to a
smaller sensitivity. That should not come as a total surprise because of the
denominator Φj+1 in ∂z/∂qj . The argument of Φ plays a lesser role, only
causing some fluctuations due to the random nature of the rj .

An especially interesting and frequently occurring case is when the base
terms lie on the unit circle. For |Φ| = 1 we read from Figure 1 that the
median worst condition number with respect to the various coefficients of Q(z)
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is approximately 10−0.514 ≈ 0.306 (with a small standard deviation ≈ 0.013).
The mean value rounded to 3 significant digits is the same.

Fig. 1 Median of maxj=0,...,ν sensitivity for different base terms.

In the second experiment we randomly fix the value of the base term
Φ = exp(1.8115838742πi) without any issue, as a consequence of the first
experiment. We study the influence on the sensitivity of both the number of
rows m and the number of columns ν of the Hankel matrices. Again 100 com-
putations of the sensitivity are run, every time with different random values
rj and the median of the maximal sensitivity over the various coefficients is
selected. The results are shown in Figure 2. In Figure 3 we zoom in on some
specific ratios for m/ν, thereby comparing to the conditioning of the classical
Padé denominator (where m = ν), obtained in [1]. Both the square and the
overdetermined problem statements are clearly similarly well-conditioned.

We conclude that the sensitivity primarily decreases with the number
of columns, a recommendation that was already formulated in [8] and [11].
Rather than add a handful of terms to n to counter the noise, we recommend
to choose ν a good deal larger than n.

In a final experiment, we again randomly fix the base term Φ =
exp(1.8115838742πi), and moreover fix the dimensions ν = 10, m = 20. In this
case 1 million different noise realizations are used. The left plot in Figure 4
depicts a histogram over all values of the sensitivity, while the right plot in
Figure 4 is restricted to the interval [0, 0.5]. We observe that there are a few
outliers present, but the majority of the values lie in the interval [0, 0.5]. Sub-
sequently, we increase the value of m to 50, and repeat the experiment. The
results are found in Figure 5. First of all, we notice that we do not find any out-
liers. Also, the distribution becomes narrower. However, the mean has slightly
increased. This influence of the number of rows m is confirmed in Figure 6,
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Fig. 2 Median of maxj=0,...,ν sensitivity in terms of m and ν.
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Fig. 3 Conditioning for various m/ν ratios, including m = ν from [1].

where we further increase m to 100. In this case, the distribution becomes even
more narrow. Hence, we can conclude that increasing the number of rows does
not decrease the sensitivity, but rather stabilizes this value.

Future work

In several exponential analysis algorithms the rooting of the characteristic
polynomial q(z) or its reverse zνq(1/z), which is called the Prony polynomial,
is an essential step. Another approach to obtain the base terms Φj , j = 0, . . . , n
is through the solution of a generalized eigenvalue problem [12]. In a follow-up
paper we plan to make a perturbation analysis of this alternative approach,
when programmed in a least squares sense.
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Fig. 4 Histogram of the sensitivity for ν = 10, m = 20 .
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Fig. 5 Histogram of the sensitivity for ν = 10, m = 50 .
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