
Paper: Regular Sparse Array Direction of Arrival
in One Dimension.

Ferre Knaepkens, Annie Cuyt, Wen-shin Lee, Dirk de Villiers

Regular Sparse Array Direction of Arrival in One Dimension

V.A. Example 1

Contents

• Script environment
• Example 1

Script environment

This script does depends on the random number generator state.

clear

close all

warning off;

V.A. Example 1

First we demonstrate the behaviour under influence of noise, mainly to illustrate
the effect of the validation step. Therefore, we consider n = 10 received signals,
given in Table I.. We use both standard ESPRIT and the new method with
ESPRIT underlying to retrieve the 10 corresponding angles for increasing levels
of noise. The additive noise is expressed in terms of SNR, which is defined by
20 log10(||f ||2/||ε||2), where ||f ||2 and ||ε||2 denote the 2-norm of respectively
the sample and additive noise vector.

signal.ampl = [0.3, 0.2, 0.4, 0.5, 0.3,...

0.4, 0.7, 0.2, 0.5, 0.4];

signal.phase = [0.9, 1.2, 0.8, 0.7, 1.1,...

0.7, 1.3, 1.2, 1.0, 1.1]*pi;

signal.angles = deg2rad([10, 34, 63, 80, 90,...

96, 124, 141, 154, 166]);

For the standard ESPRIT approach, a ULA of 60 antennas with a distance of
0.48λ between the elements is considered. We also tell ESPRIT the correct
number of signals, i.e. n = 10. We solve the DOA problem using ESPRIT on
256 snapshots. In Fig. 4 at the top, the results of all 256 snapshots are shown
together. We observe that ESPRIT works well for a high SNR, however for

1

higher noise levels (approaching 10dB) the standard ESPRIT approach delivers
unreliable results.

signal.freq = 1.5*1e6;

c = physconst(’LightSpeed’);

signal.dist = 0.48*(2*pi*c/signal.freq);

signal.nrelems = [60,0];

signal.rate = 1;

signal.shift = 0;

t = linspace(0,1,256);

K = numel(t);

bsolver = BSolverEsprit(’--nsamples’,60,’--nrows’,41,...

’--ncols’,20,’--nterms’,10);

SNRvec = 5:40;

angles_ESPRIT = cell(numel(SNRvec),1);

SNR_ESPRIT = repmat(5:40,10*K,1);

wtbr = waitbar(0,’Please wait...’);

for j = 1:numel(SNRvec)

SNR = SNRvec(j);

waitbar(j/numel(SNRvec),wtbr,sprintf(’ESPRIT: SNR = %i’,SNR));

[signal.samples,~] = create_DOA_signal(signal,t,SNR);

angles_ESPRIT{j} = zeros(K,10);

for k = 1:K

sgnl = Signal(1/signal.dist,signal.samples(k,:));

PHI = bsolver.solve(sgnl);

angles_ESPRIT{j}(k,:) = rad2deg(real(acos(1i*log(PHI)*c...

/signal.dist/signal.freq)));

end

angles_ESPRIT{j} = angles_ESPRIT{j}(:);

end

close(wtbr)

fig_ESPRIT = figure;

plot(SNR_ESPRIT(:),cell2mat(angles_ESPRIT),’b.’,’MarkerSize’,15)

hold on

plot(repmat([5;40],1,10),repmat(rad2deg(signal.angles),2,1),’k’);

xlabel(’SNR (dB)’)

ylabel(’Angles (degrees)’)

title({[’Fig. 4. (top) The solution of the DOA problem given by ’,...

’Table I for increasing’],[’noise levels of standard ESPRIT.’]})

2

5 10 15 20 25 30 35 40

SNR (dB)

0

20

40

60

80

100

120

140

160

180
A

n
g
le

s
 (

d
e
g
re

e
s
)

Fig. 4. (top) The solution of the DOA problem given by Table I for increasing

noise levels of standard ESPRIT.

At the same time, our new approach (with ESPRIT as underlying method)
also uses 60 antennas in total: a first sparse ULA of 30 antennas and a shifted
ULA of 30 antennas, with a scale and shift parameter of respectively σ = 25
and ρ = 14. The distance between the virtual dense array elements is also
chosen as 0.48λ resulting in a total array size of more than 350λ. This might
be an unrealistically large system for many applications, but the example serves
to illustrate the efficacy of the proposed method even under such demanding
conditions where both σ and ρ are large. As stated before, increasing σ results in
a more difficult root intersection (validation) problem. Since the method detects
the number of signals n automatically, n need not be passed to the algorithm.
For the clusters Cσ, we choose the DBSCAN parameters µ = 0.8 × 256 = 205
with increasing equidistant δ values, namely δ = 0.01, 0.0825, 0.155, 0.2275, 0.3.
For the Cρ clusters we take µ = 0.6× 256 = 154 with δ = 0.5, because they are
usually less accurate, as already pointed out. At the bottom of Fig. 4 we find
the results from 256 snapshots. For the lower noise levels, we clearly see that
our method performs comparably. When the signals are perturbed with a lot of
noise, we observe that the new method does not return all the angles, however, it
also does not return unreliable results such as the stand-alone ESPRIT method.
It detects that the signal is heavily perturbed, since the results are not validated
by the cluster analysis and hence not all angles are recovered.

signal.freq = 1.5*1e6;

c = physconst(’LightSpeed’);

signal.dist = 0.48*(2*pi*c/signal.freq);

signal.nrelems = [30,30];

signal.rate = 25;

signal.shift = 14;

3

t = linspace(0,1,256);

cluster_spec.MinPts1 = 205;

cluster_spec.MinPts2 = 154;

cluster_spec.epsvec = [0.01,0.085,0.155,0.2275,0.3];

cluster_spec.eps2 = 0.5;

angles_new = cell(numel(SNRvec),1);

SNR_new = cell(numel(SNRvec),1);

wtbr = waitbar(0,’Please wait...’);

for j = 1:numel(SNRvec)

SNR = SNRvec(j);

waitbar(j/numel(SNRvec),wtbr,sprintf(’NEW: SNR = %i’,SNR));

[signal.samples1,signal.samples2] = create_DOA_signal(signal,t,SNR);

angles_new{j} = DOAsolver(signal,cluster_spec,15);

angles_new{j} = angles_new{j}(:);

SNR_new{j} = repmat(SNR,numel(angles_new{j}),1);

end

close(wtbr)

fig_new = figure;

plot(cell2mat(SNR_new),rad2deg(cell2mat(angles_new)),’r.’,’MarkerSize’,15)

hold on

plot(repmat([5;40],1,10),repmat(rad2deg(signal.angles),2,1),’k’);

xlabel(’SNR (dB)’)

ylabel(’Angles (degrees)’)

title({[’Fig. 4. (bottom) The solution of the DOA problem given by ’,...

’Table I for increasing’],[’noise levels of the new method.’]})

4

5 10 15 20 25 30 35 40

SNR (dB)

0

20

40

60

80

100

120

140

160

180
A

n
g
le

s
 (

d
e
g
re

e
s
)

Fig. 4. (bottom) The solution of the DOA problem given by Table I for increasing

noise levels of the new method.

5

