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Abstract An efficient identification method is proposed for passive rational
approximation of frequency domain responses. The method is applied to compute
a transfer function from tabulated S-parameter data of a multiport microwave filter.
Numerical results validate the robustness and efficacy of the modeling approach.

1 Introduction

Broadband characterization of passive linear systems, based on measured and
simulated data has become a topic of intense research, mainly due to the increasing
speed and decreasing size of electronic circuits. While the operating frequency is
increasing well above the multi-GHz frequency range, parasitic effects that were
previously ignored cannot be overlooked anymore for accurate system level analysis
[1]. This complicates the modeling and design of RF, microwave and millimeter-
wave components and systems. The number of design failures caused by signal
and power integrity problems has become problematic because the existing design
tools and modeling methodologies cannot address these issues in an appropriate way
[2, 3].

Common approaches to tackle these problems are based on the approximation
of tabulated S-parameter frequency responses using rational functions and subse-
quently synthesizing a SPICE compatible macromodel [4, 5]. These macromodels
approximate the complex electromagnetic (EM) behavior of high-speed multi-port
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systems at the input-output ports in the frequency domain by rational functions [6].
The advantage of this approach is that a circuit can be modeled as a black-box, and
that no knowledge of its internal logic is required for the modeling process [7].

In 1999, the iterative Vector Fitting (VF) technique was introduced [8–10] to
compute such macromodels in a robust and efficient way. It is applicable to both
smooth and resonant responses with high orders and wide frequency bands. An
additional advantage is that stability of the poles is easily enforced by a simple pole-
flipping scheme. Since VF is now adopted in many societies of applied engineering,
including power systems and microwave systems, it has drawn a lot of attention from
researchers, and it has become the de-facto standard for rational approximation.
A general overview of the VF methodology was recently presented in [11].

A known restriction of the technique is that the computed macromodels are not
guaranteed to be passive by construction. Nevertheless, passivity of the macromodel
is of crucial importance since a non-passive macromodel may lead to unstable
transient simulations in an unpredictable manner [12, 13]. This paper applies a
new passivity enforcement technique that is able to enforce passivity to a non-
passive rational macromodel by means of an overdetermined least-squares fitting
algorithm [14].

Numerical results show that the presented approach achieves an excellent trade-
off between computation time and accuracy preservation of the macromodel.

2 Vector Fitting Algorithm

Given a set of S-parameter data samples fsk; Hmn.sk/gK
k D 1, the VF algorithm [8]

computes a rational macromodel that matches the frequency response by solving
several least squares problems in successive iteration steps (t D 0; : : : ; T ), where
1 � m; n � Q denotes the mth row and the nth column of a Q-port transfer matrix H .

arg min
ˇ
ˇ.�Hmn/t .s/ � � t .s/Hmn.s/
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2

(1)

Both .�Hmn/t .s/ and � t .s/ in (1) are expanded as a linear combination of partial
fractions (or orthonormal rational functions [15]) that share common poles fat
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In the first iteration step (t D 0), the initial starting poles a0
p are selected according

to a heuristical scheme [8]. It is trivial to transform (1) into an overdetermined
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set of least-squares equations At xt D bt , where the solution vector xt contains the
unknown coefficients fct

p;mn; Qct
pgP

p D 0. Based on the coefficients f Qct
pg, it is possible

to obtain a new set of relocated poles by solving the zeros of � t .s/ as an eigenvalue
problem. These relocated poles replace the initial set of poles, and the process
of solving (1) is repeated iteratively until the poles are converged to some quasi-
optimal position. The trivial null solution of (1) is avoided by setting one coefficient
Qct
0 D 1 or by adding an additional relaxation constraint to (1), as in [9]. It was

shown in a previous report that this process is related to the Sanathanan-Koerner
iteration [16].

In the final iteration step (t D T ), the transfer function .�Hmn/T .s/ in partial
fraction form is obtained by solving (1) with � T .s/ D 1. All the details about this
Vector Fitting procedure are extensively reported in literature, see [8, 17].

3 Passivity Enforcement Algorithm

The passivity constraints for stable and causal macromodels in the scattering case
require that the singular values of the transfer matrix H are unitary bounded [18,19]

I � H H
mn.j!/Hmn.j!/ � 0 8! 2 R (4)

By computing the eigenvalues of an associated Hamiltonian matrix, it is possible to
assess algebraically the passivity of the model [20, 21]. In addition, the eigenvalues
can be used to exactly pinpoint the boundaries of possible passivity violations. To
compensate any occuring violations, the following procedure is used. First a dense
set of frequencies !k is used to evaluate the singular value decomposition

Hmn.j!k/ D Uk˙kV H
k (5)

where ˙k D diag.�1;k ; : : : ; �Q;k/ is a diagonal matrix that contains the singular
values on its main diagonal. The set contains all the samples of the original
frequency response, combined with some additional samples in the vicinity of
passivity violations [22]. These samples are included to ensure a good resolution
of the singular value trajectories. Then, a set of violation parameters is constructed
as follows

�Hmn.j!k/ D Uk�˙kV H
k (6)

with �˙k D diag.��1;k ; : : : ; ��Q;k/, where

��q;k D 0 if �q;k � � (7)

��q;k D �q;k � � if �q;k > � (8)

The threshold parameter � is chosen close to, but less than 1. In general, larger
values of � (closer to 1) are able to better preserve the accuracy of the model, but
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may require additional iterations to achieve passivity. In order to make the model
passive, a new set of offset residues �cT

p;mn is computed by fitting the violation
parameters �Hmn.j!k/ using the same set of poles of the original model.

arg min
ˇ
ˇ.�Hmn/T .j!/ � �Hmn.j!/

ˇ
ˇ
2

(9)

A new model with reduced passivity violations is obtained by substituting cT
p;mn

with cT
p;mn � �cT

p;mn. The process is repeated iteratively until passivity is reached.

4 Example: Quarter Wavelength Filter

In this example, the presented approach is used to compute a passive macromodel
of a 2-port quarter wavelength filter. The scattering parameters of the structure
are simulated in the frequency domain with a planar full-wave electromagnetic
simulator over the frequency range 1–12 GHz. Then, the vector fitting algorithm
is used to approximate the response by a 28-pole strictly proper transfer function
using 1,000 data samples. The desired model accuracy of the S-parameters is -60
dB or better, which corresponds approximately to 3 significant digits.

Even though the simulated data samples are passive, it is seen from Fig. 1 that
the resulting macromodel has several small in-band passivity violations. Therefore,
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Fig. 1 Quarter wavelength: singular values of scattering matrix
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Fig. 2 Quarter wavelength: magnitude of matrix elements

the proposed passivity enforcement procedure is applied to compensate them, and
the algorithm converges to a passive macromodel in a few iteration steps. It is found
that the maximum singular value of the scattering matrix decreases monotonically
in each iteration step of the algorithm. Figure 2 shows the magnitude of the original
frequency response, and the deviation that is caused by the passivity perturbation. It
is clear that the overall accuracy of the macromodel is well preserved.

5 Conclusions

An efficient algorithm for passive macromodeling of microwave components is
proposed. First, a robust macromodeling technique is used to approximate the
frequency response with a rational transfer function. Then, the passivity of the
model is assessed by using an algebraic passivity test. If the model is non-
passive, an iterative passivity enforcement scheme is applied to perturb the model
coefficients using a standard least-squares procedure. Numerical results confirm
that the approach is effective, and that the perturbation does not compromise the
accuracy of the model.
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