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For the introduction of abstract Pad~-approximants we refer to (1)*and (II). Now 

we want to consider an interesting numerical example that can teach us something 

about the location of zeros and singularities of a nonlinear operator and its 

different approximations (sections I-2-3). 

Also we shall compare abstract Pad~-approximants for a nonlinear operator~2-~R 

with other types of 2-variable rational approximants (sections 4-5). 

* Roman figures between brackets refer to a work in the reference list. 

** This work is in part supported by I.W.O.N.L. (Belgium) and in part by 
N.F.W.O. (Belgium). 



1. Nonlinear operator 

Let F: ]R 2 -BR2:(x,y)  -* 

138 

sin(2+O.05 + x - y ) )  

cos(  0o5- x+y)/ 
\F2(x,Y) 

The operator F is singular for  x=0 .1  

or y =0.1 

or y =x + (2k+I) ~ 7+ 0.05 (keZ). 

The second component F 2 vanishes on y=x+k~+0.05 (keZ). 

0 i0.37981434.. 
For k=o : F=O in (0.05) and ,0.42981434. ). 

For k<o  : the f i r s t  component F I does not vanish on y = x + k ~ + 0 . 0 5 .  

For k>o  : F has two zeros x I and x 2 on y = x + k=+ 0.05. 

On y = x + k~+ 0.05 the operator F has two poles, namely in 

X l =  0.05 - k~ and x2 = 0.01. 

A character is t ic  behaviour of F on y = x + k~+ 0.05 for  k>o  and k<o  

is respect ively shown in FI.1 and FI .2,  while F1.3 shows the behaviour 

of  F on y = x + 0.05 (k=o). 

The fac t  that  for  k>o  : Ix1 - Xll decreases for  increasing k, com- 

plicates the ca lcu lat ion of the root  x 1 of F(x,y) = O. 
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2. (1,1) ~bstract Pad~ Approximant (APAI 

Let us now approximate F by a rational operator R and study the 

location of the zeros and the poles of this approximation. We perform 

the necessary calculations (as described in ( I ) )  to obtain the (1,1)- 

APA in (~) and have to conclude that i ts  f i r s t  component is undefined 

in (~). But the second component is the ( I , I )  Abstract Pad~ Approxi- 

mant to the second component of F. 

A x+b~+cx2+dxy+ey 2 _ Ol 
R: ~R2.-,~2:(x,y!--,, I a'x+b'y+(c'x2+d'xy+e'y?) sin(~+O.05) 

I I  \  os< -o.05 +ix-yl t sinI -o.051+O.5cotoI -o.051 osI -o. 
\ I+n.5 (x-y) cotg(~-o.o5) 

= ( R I ( x ' Y )  

R2(x,Y) ) 
with a=-0.3025 cotg(~+O.05) +5.5 

b=0.3025 cotg(~+0.05) -3 .3  

c =42.3875 - 5.5 cotg(2+ 0.05) - 0.3025/sin2(-~ + 0.05) 

d=-111.75+9.6 cotg(~+O.O5) +0.605/sin2(~+0.05) 

e=63 .5 -3 .3  cotg(-~+O.O5)-O.3025/sin 2(~+0.05) 

a'--o.55 cos(~+o.c5) - lOsin(~+O.O5) 

b':-0.55 COS({+O.05)+6sin(~+O.05) 
c': 0.55 cotg2(~+o.05)-10cotg(~+o.o~ ) + i04.75 +0.55/sin2(~+0.05) 

d': -1.1cotg2(~+ 0.05) + 16cotg(~+O.O5)-15-1.1/sin2(~+0.05) 

e': 0.55 eotg2(~+o.05)-6cotg(~+o.05)-~o +0.55/sin2(~+0.05). 
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The second component R 2 vanishes on 

cos(~ -0.05) 
y=x~ 

sin(~ ~ -O.05)+O.5cotg(~ -O.05)cos(~ -0 .05) 

=x +0.0499... 

R has two zeros, near to the zeros of F on y :x+O.05 (k:O), namely 

r0.00252235.. ,0.49805568... 
in ~0.05250148. ) and ~0.54803481,.. ). 

Because numerator and denominator of R are polynomial operators we 

lose the pe r i od i c i t y  of F (no i n f i n i t e  number of zeros). The abstract 

rat ional  approximant has d is t r ibu ted i t s  poles in a very in terest ing 

manner. 

Looking at F~.I and F2.2 which show the poles of F(plotted as O00-1ines) 

and those of R(plotted as XXX-lines) in the considered area, we remark that 

the dominating direction of the f i r s t  hisector for the poles of F is 

somewhat found back in the asymptotic behaviour of the poles of R I 

(hyperbola) and in the situation of the poles of R 2 on y=x+39.966... 

X-axis and Y-axis are marked by dots ( . . . )  as well as the asymptotes 

for the poles of RI: y = 1.305x - 0.015 

y = -I.649x + 0.138 
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3. Taylor series expansionn 

Since for functions f : ~ ~ we can compare the curve-fitting abil ity 

of a rational function of degree n in the numerator and degree m in 

the denominator with that of a polynomial of degree n+m, we also 

calculated the Taylor series expansion T in (~) up to and including 

2 nd order terms. 

T: ~2 ~ 2 : ( x , y ) ~ I  sin(~+O'05) 

os(~-o.os) + (• sin(~-o.~5) - o.~ I• 

T2(x,Y) 

1 with a : 
sin(~+0.05) 

b= 1 
sin(~+O.05) 

i 
C = 

sln(~ + 0.05) 

I d= 
sin(~+0.05) 

I 
e - 

(0.55 cotg(~ + 0.05)-i0) 

(-o.s5 cotg(~+o.o5)+G) 

(1+cos2(~ +0.05)) 
(-0.55 + 10 cotg(~ +0.05) - 104.75) 

sin2(~+ 0.05) 

(i +cos2(~+ 0.05)) 
(1.1 - 16 cotg(~+O.05)+15) 

sin2(~+ 0.05) 

(1 + cos2(-~ + 0.05)) 

sin2(~ +0.05) 
(-0.55 +6 cotg(~+O.05) +50) 

sin(~ + 0.05) 
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F3.1 which shows the zeros of T I (hyperbola) and T 2 (straight lines) 

demonstrates that we do not have to look for zeros of T near the origin. 

The singularit ies of F are the cause of this bad behaviour of T. 

t 

Y 

, . ~ 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6  

I I I I I I I I I I I  

F3.1 

But T 2 does also preserve the dominant direction of the f i r s t  bisector 

for the zeros of F. 

we got (~), the point in which the approximations were cal- Assume that 

culated, from a previous iteration-step in a procedure that calculates 

root (~.05) of F(x,y) =0. the 

Calculating the approximation R and equating i ts numerator to zero 

0 would supply a good estimate of (0.05), while the approximation T cannot 

be used to ohtain an estimate of the root in (~.05)'u 
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4. Different Pad~-type 2-variable rational approximants 

We are going to compare Abstract Pad~ Approximants (APA) or Abstract 

Rational Approximants (ARA) for F with Chisholm diagonal ( I l l )  approximants 

(CA) or Hughes Jones off-diagonal (IV,V) approximants (HJA), Lutterodt (VI I ) -  

approximants (LA), Lutterodt-approximants of typf~ e I ~Vlll) (LARI), 

Karlsson and ~fallin-approximants (VI) (KI,!A) and partial sums of the 

abstract (IX) Taylor-series development (PS), al l  in (~). 

The calculation of each type of approximant ~ : ~ 2 ~  is based on : 

(FQ-P)(x,y) : ~ x i yi i,j=o dij with dij=O for ( i , j )  E S c~2. 

We call S the interpolationset; the choice of S determines the type of 

approximant. The KWA is unique when the interpolationset S contains in 

addition to { ( i , j ) l i + j  ~ n}, as many points as possible in a given 

enumeration in~2 (we have used the diagonal enumeration (O,O), (1,0), 

(0, I ) , (2,0) , ( I , I ) , (0,2) , (3,0)  . . . .  ). 

The LA need not be unique with respect to the chosen interpolation set (we 

shall give the interpolationset together with the calculated approximant). 

For the CA, HJA and LA we denote by (nl,n2)/(ml,m2) a rational approxi- 

mant of degree n I in x and n 2 in y in the numerator and of degree m I in x 

and m 2 in y in the denominator. For the APA and KWA we denote by n/m a 

rational approximant where the sum of the degrees in x and y is at most n 

in the numerator and at most m in the denominator. The n th partial sum of 

the Taylor series development is indicated by PSn. 

Let N be the amount of (unknown) coefficients in the approximant (for 

rational approximants I coefficient can always be determined by a 

normalisation). 

We consider N-1 to be a measure for the "operator-fitting" abi l i ty  of the 

calculated rational approximant, and N to be a measure for the "operator- 

f i t t ing"  ab i l i ty  of the considered partial sum of the Taylor-series 

development. 
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For CA, HJA and LA : N=(n1+1)(n2+1)+(m1+1)(m2+1). 

For KWA and APA : N=�89189 

For PSn : N=(n+l)(n+2)/2. 

For increasing N we expect increasing accuracy. 

We do remind that for  a l l  the types of rat ional approximants considered, except LAB I ,  

a l o t  of classical properties of Pad~-approximants for analyt ic functions: 

~ remain va l id ,  now for analyt ic operators: R 2 ~ ,  such as: 

a) reciprocal covariance: i f  F(0,O)SO and P/Q is the Pad~-type aoproxi- 

mant for F with interpolat ionset S, then Q/P is t~e Pad~-type approxi- 

mant for ~ with the same interpolat ionset.  

b) i f  P/Q is a diagonal Pad~-type approximant Cnl,n?) = (ml,m2) or n : m) 

and for a , h , c , d E ~ :  a d - b c ~ ,  cF(O,O)+d~0, 

then (aP+bQ)/(cP+dQ) is the Pad~-type aoproximant ~nl,n?)/(ml,m2) or n/m) 
aF+h 

for with the same interpolatiorset. 
cF+d 

But only the CA, HJA, LA type B 1 and APA have the projection property: 

equating in the Pad~-type approximant P/Q a variable to zero, supplies 

the Pad~-type approximant in the remaining variables. 
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5. Examples and conc.l..us_iors 

a) Let us consider F : JR2 ~R: (x,y)-~ 

type 

OPS2 

Q HJA(1,1)/(O,I] 

Q HJA(I,0)I(1,11 

Q HJA(0,1)/(I,I) 

Q HJA(I,I)/(1,0) 

Q KWA I/I 

Q LA(1,1)/(0,1) 

Q LA(1,0)/(1,1) 

Q APA 1/1 

Q C A ( I , I ) / ( I , I )  

approximant 

1 + lOx + 101xy 

degenerate 

I + lOx +~y + (101 + 10~)xy 

I + lOx 

1-101xy 

i +ay 

degenerate 

I - ( ~ ) y  

I -fOx - ( ~ - ~ ) y  + axy 

1 + lOx + 101xy 

I + lOx - 10.1y 

1-10. ly 

I + lOx +ay + (I01 + lOa)xy 

l+lOx 
1-101xy 

1 +ay 

1 + lOx - I 0 . I ~  

1-10.1y 

degenerate 

i + lOx + (lO-lOa)y + axy 

1 + (10 - lOa)y + (lOla - 201)xy 

i + ' 

O. 1-y 

X 
+ sin (xy). 

N exact order of FQ-P 

6 O(xy 2) 

6 O(xy 2) 

-I000 : ~  ~O(xy 3) 

6 O(x2y) 

O(x2)W 

6 O(xy 2) 

6 O(xy 2) 

6 see (~) 

6 O(x2y) 

6 O(xy 2) 

O(x2y, xY 2) 

201 O(xy3 
101 
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O HJA(I,2)/(0,2) 

Q HJA(2,1)/(0,2) 

Q L~(1 ,2) / (0 ,2 )  

Q LA(2,1)/(0,2) 

1 

Q KWA 1/2 

0 ARA 1/2 

Q APA 211 

KWA 2/1 

Q PS 3 

Q CA(2,2)/(1,1) 

degenerate 
l+lOx+ay+(lOl+lOa)xy+~y2+(lOB+lOla+lOOO)xy 2 

l+~y+sy 2 

degenerate 
l+10x + ~y + (101 + 10~)xy 

l+ay 

l+lOx+my+(lOl+lO~)xy+By2+(lO~+lOl~+lOOO)xy 2 

l+~y+Sy 2 

with 8=-103(10+~)/101 

I000 i + 10x --1-0~-y + xy 

1 + 10x - 10.1y 
9 

1-10. ly 

x - 1.01y + 10y 2 + 10x 2 - 20.2xy 

L4 
x - 1.01y + 10y 2 - I0. ixy + 2.01xy 2 

1000 201 
1 +10x --TOT Y + 1--0T xy 

9 

1 - - ~ y  

lOGO 201 
1 + lOx --I-OT y + 1-'~ xy 

9 
1 -~1-~ y 

l+10x+101xy+1000xy 2 0 

degenerate 3 

1+ (lO+a) x- lOy+ (B+I) xy+lOc~x2- lOxy2+ 

(10~+!01a) x2y+ (1018+1000a) x2y 2 

1 + ~x - 10y + 8xy I 

9 0(xy 3) 

~ : - i0  and B:0 

0(x3y 3) 

9 0(xy 2) 

9 see Q 

9 0(xy 3) 

0(xy 2) 

0(xy 3) 

0(xy 3) 

O(xy 3) 

O(xy 3) 
O(x2y 3) 

(~=0 and B=O 

:, O(x3y 3) 
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Q KWA 311 

Q LA(2,2)I(1,1) 

Q APA 3/1 

Q PS 4 

Q LABI(I,1)/(0,11 

Q LAB1(1,0)/(1,1) 

0 LABI(I,2)/(0,2) 

Q LABI(2,1)/(O, 2) 

Q LAB1(2,2)/(1, I) 

l+lOx-1Oy+xy-lOxy 2 

1 - lOy 

no interpolationset satisfying the 
description in (Vll) 

1 + lOx - lOy + xy - lOxy 2 

1 -10 y 

i + lOx + 101xy + 1000xy 2 + lO000xy 3 

the prescribed interpolationset 
supplies a system of linearly 
dependent equations 

6 

9 

9 

13 

O(x3y 3) 

O(x3y 3) 

O(xy 4) 

For each of the mentioned approximations of the f i rs t  example we have 

plotted the surface IF(x,y)-approximation (x,y) l on 

A= {-0.09,0.09] x {-0.09,0.09] (F6.I-F5.10), nearly all from the same 

viewpoint. 

We have also calculated an estimate E r of 
sup[F(x,y)-approximation(x,y)l 
A 

sup IF(x,y)I 
A 

which is a measure for  the re la t ive  error made by approximating 

(suPlF(x,y)l ~10). 
A 

We remark that we may cal l  the APA accurate. 



F6.1 

IFix,y) - i l+lOx+lOIxy)l 

~r =0.73 

vlewpoint i i ,2 ,10)  

| 
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F6.2 

1+10x - ~  201 Y +I-'~TxY 
Fix,y)-  

E r = 0.06 

vi~wooi.t i1,~,~) | @ @ @ | @ 

F6.4 

F(~,y) -  1-I0.I~ 
1-10x-10.1y 

~r = 90.1 

viewpoint (1,1,100) because of 

steepness 

| 

F6.3 

I l+lOx 
F i x ' y ) -  1"z'lIT/-x~ I 

e r = 0.81 

viewpoint (I ,2,10) 

| 



F6.5 

F(x,y) _l_+10x-10. ly [ 
1-10.1y 

Cr = 0.09 

viewpoint (I,2,10) 

|174 

F6.8 

I F(x,y) - + 10x + 1000xy 2) I (I 101xy + 

c r = 0.66 

viewpoint (1,2,10) 

@ | 
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f 

F6.6 

~ .~ 1 i0191 j 
' + ' u x 2 z  Y4 loi xy 

F(x,y) 1 - . l ~ y  

Cr = 0.73 

viewpolnt (1,2,10) 

| 

F6.7 

J I + lOx - 10y + xy - lOxy 2 [ 105 
F(x,y) 1-10y 

t 

l+lOx-lOy+xy-lOxy2 [ 
~r = 0.9 x 10 .7 for F(x,y) 1-I0y 

viewpoint (1,2,1) because of flatness 

@ @ @ @  
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FS.~ 

x - 1.01y + lOy 2 + 10x 2 - 20.2xy 

I x - 1.01y + 10y 2 - lO.Ixy + 2.01x2y 

F(x,y) 

E r=O.07 (equating IF-ARA I121 (~) to O) 

viewpoint (1,2,10) 

| 

F6.10 

IF(~,y)-II+1Ox§247247 I 
% =0.6 

viewpoint (I,2,10) 

@ 
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We merely have to compare : ~r for 0 - Q and remark that at F6.2 

and F6.5 the most accurate approximations are gathered; HJA(I,1)/(0,1) 

is a bi t  more accurate than KWA 1/1 and APA 1/1 because a rational 

function (1,1)/(0,1) f i t s  very well the behaviour of F; however some- 

times the approximation cannot be adjusted to F in this way (more 

complicated operators F) and we can as well at random have chosen 

worse approximants without knowing i t  (e.g. (1,0)/(1,1) or (0,1)/(1,1) 

or (1,1)/(1,0) in this case) 

Q - Q and remark that F6.2 for ~r 

and F6.9 gather very good approximations; only HJA(I,2)/(0,2) is better, 

partly because of the very degenerate solution and partly because the 

denominator l+~y+By 2 can f i t  F very well 

for (~) - Q and remark that PS 4 E r 

is very bad in comparison with al l  the rational approximations, what 

was to be expected. 

We compare the different types of approximants on two other examples. 

h) Let us consider F : ~2 ~ : (x,y) xeX-y ey = z ~ 1  x i yj 
x-y i, j=o ( i+ j ) !  

Here we have in the Taylor series expansion of F a term in every power 

xly j . 

We compare the function values in some points. 
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x 
Y 

xe x - ye y 
F(x,y) 

PS 2 

LABI(1,1) / (1 ,0)  

LAB1(1,1)/(1,1) 

ARA 1/1 

C A ( I , I ) / ( I , I )  

HJA(1,1)/(0,1) 

KWA 1/1 

x -y  

1+x+y+ �89 (x2+xy+y 2) 

1 +lx +y 

I +�89 1 -~Txy 

1-�89 +~xy 
x+y +�89 2 +3xy +y2) 

x+y -�89 2 +xy +y2) 

1 +�89 

1- �89 +~xy 

I +x +�89 

1�89 
1 +�89 

I -~x 

0.65 

0.85 

3.718 

3.349 

3.222 

4.153 

4.455 

3.819 

3. 609 

3.222 

We see that ARA is good as well for x>y as for x<y (on a not too large 

neighbourhood), while the other approximations, except CA(1,1)/(I,1), are 

not. The reason is s t i l l  the same as in section 5a:(1,1)/(I,0) f i ts  the 

behaviour of F i f  x>y and (1,1)/(0,1) f i ts  the behaviour of F i f  y>x. 

What's more: F(x,y)=F(y,x) and APA and ARA always conserve this property, 

while the other types of approximants do not. 
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c) Now consider F : { ( x ,y ) l y~ -x -1 }  c R 2 ~ : ( x , y )  ~ 1+V~x+y = 

x+y = (x+y) k (2k-3)!I 
1 + ~ + Z ( - I )  k-1 

2 k=2 k[ ~k 

where (2k-3)[[ = (2k-3)(2k-1) . . .  5.3.1 

Ve calculate some approximants: 
I + 0.75 

APA i / I  
I + 0.25 

1 + 0.75 
CA (1,1)/(1,1) 

HJA (1,1)/(1,0) 

HJA (1,1)/(0,1) 

I +0.75 
K~/A I / I  

I +0.25 

I +0.75 
LA (1,1)/(1,1) 

or ~ 

LA (1,1) / ( I ,0)  

J~o. 

1--  i 

LA (1,1)I(N,I) 

(x+y) 

(x+y) 

(x+y) - 0.1875 xy 

I + 0.25 (x+y) - 0.1875 xy 

I + 0.75x + O.5y - 0.125 xy 

i + 0 . 2 5  x 

I + O.5x + 0.75y - 0.125 xy 

1 + 0.25 y 

(x+y) 

(x+y) 

(x+y) - 0.1875 xy 

1 + 0.25 (x+y) - 0.1875 xy 

I +  0.75x + O.5y - 0.125 xy 

I + 0 . 2 5 x  

I + O.5x + 0.75y-  0.I75 xy 

I + 0 . 2 5 y  
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The border of  the domain of  F is n i ce l y  s imulated hy the ooles of  the 
2k+2 -~k-2 

APA k / l  : y : - x - ~ w i th  l im ~ = - I  
2k-] k - -  2k- I  

We also compare the func t ion -va lues  in d i f f e r e n t  po in ts :  

F 

APA 1/1 

CA (1,1)/(1,1) 

HJA ( 1 , 1 ) / ( 1 , 0 )  

HJA ( 1 , 1 ) / ( 0 , 1 )  

( x , y ) : ( 2 , - l )  

1.4142 

1.4000 

1.3077 

1.5000 

2.0000 

( x , y )= ( -O .4 , -O .5 )  

0.3162 

0.4194 

0.3898 

0.4722 

0.4571 

(x,y):(?,-2) 

1.0000 

1.0000 

1.0000 

1.3333 

2.0000 

When we compare the approximat ions tha t  have the same "opera to r -  

f i t t i n g "  a ~ i l i t y  (as def ined e a r l i e r  ) ,  we see tha t  APA 1 / I  and 

Y$~PA I /1  are much more accurate than the o ther  types. 



157 

References 

Sections 1-3 : 

(1) Cuyt Annie A.M. 

Abstract Pad6-approximants in Operator Theory. 

Lecture Notes in Mathematics 765: Pad~ Appr. and its Appl. 

(L. V!uytack ed.) pp. 61-87, Springer, Berlin,1979. 

( I I )  Cuyt Annie A.P~. 

On the properties of abstract rational (l-point) approximants 

(ARA).to appear in: Journal of Operator Theory 5(2), spring '81. 

Sections 4-5 : 

( I l l )  Chisholm J.S.R. 

N-Variable Rational Approximants. 

in : Saff E.B. and Varga R.S. 

Pad~ and Rational approximations : theory and applications. 

Academic Press, London, 1977, pp. 23-42. 

(IV) Hughes Jones R. 

General Rational Approximants in N-Variables. 

Journal of Approximation Theory 16, 1976, pp. 201-233. 

(V) Hughes Jones R. and Makinson G.J. 

The generation of Chisholm Rational Polynomial Approximants to 

Power series in Two Variables. 

Journal of the Inst. of Math. and its Aopl., 1974, pp. 299-310. 

(VI) Karlsson J. and ~3allin H. 

Rational Approximation by an interpolation procedure in several 

variables. 

in : Saff E.B. and Varga R.S. 
Pad~ and Rational approximations : theory and applications. 

Academic Press, London, 1977, pp. 83-100. 

(VII) Lutterodt C.H. 

Rational Approximants to Holomorphic Functions in n-Dimensions. 

Journal of Mathematical Analysis and Applications 53, 1976, 
pp. 89-98. 

(VI~) Lutterodt C.H. 

A two-dimensional analogue of Pad~-approximant theory. 

J. Phys. A : Math. Vol. 7 N ~ 9, 1974, pp. 1027-1037. 

(IX) Rall L.B. 

Computational Solution of fConlinear Operator Equations. 

John ~riley and Sons Inc., New York, 1969. 


