To my dear mother and brother.

```
NUMERICAL COMPARISON OF ABSTRAGT PADE-APPROXIMANTS
AND ABSTRACT RATIONAL APPROXIMANTS WITH OTHER
gENERALIZATIONS OF THE CLASSICAL PADE-APPROXIMANT **
                                    by
                    Annie A.M. CUYT
            Departement Wiskunde
                Universitaire Instelling Antwerpen
            Universiteitsplein l
            B-2610 Wilrijk
                    Belgium
```

For the introduction of abstract Padéapproximants we refer to (I)*and (II). Now we want to consider an interesting numerical example that can teach us something about the location of zeros and singularities of a nonlinear operator and its different approximations (sections 1-2-3). Also we shall compare abstract Padé-approximants for a nonlinear operator $\mathbb{R}^{2} \rightarrow \mathbb{R}$ with other types of 2-variable rational approximants (sections 4-5).

* Roman figures between brackets refer to a work in the reference list.
** This work is in part supported by I.W.O.N.L. (Belgium) and in part by N.F.W.O. (Belgium).

1. Nonlinear operator

Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}:(x, y) \rightarrow\left(\begin{array}{c}\frac{e^{x}}{2(1-10 y)}-\frac{1.05-y}{1-10 x} \\ \sin \left(\frac{\pi}{2}+0.05+x-y\right) \\ \cos \left(\frac{\pi}{2}-0.05-x+y\right)\end{array}\right)=\binom{F_{1}(x, y)}{F_{2}(x, y)}$

The operator F is singular for $x=0.1$

$$
\begin{aligned}
& \text { or } y=0.1 \\
& \text { or } y=x+(2 k+1) \frac{\pi}{2}+0.05 \quad(k \in \mathbf{Z}) .
\end{aligned}
$$

The second component F_{2} vanishes on $y=x+k \pi+0.05(k \in \mathbb{Z})$.
For $k=0: F=0$ in $\binom{0}{0.05}$ and $\binom{0.37981434 \ldots}{0.42981434 \ldots}$.

For $k<0$: the first component F_{1} does not vanish on $y=x+k \pi+0.05$.

For $k>0: F$ has two zeros x_{1}^{\star} and x_{2}^{\star} on $y=x+k \pi+0.05$.
On $y=x+k \pi+0.05$ the operator F has two poles, namely in
$x_{1}=0.05-k \pi$ and $x_{2}=0.01$.

A characteristic behaviour of F on $y=x+k \pi+0.05$ for $k>0$ and $k<0$ is respectively shown in F1.1 and F1.2, while F1.3 shows the behaviour of F on $y=x+0.05(k=0)$.
The fact that for $k>0:\left|x_{1}^{\star}-x_{1}^{m}\right|$ decreases for increasing k, comDlicates the calculation of the $\operatorname{root} x_{1}^{*}$ of $F(x, y)=0$.

F1.1 ($k=1$)

2. (1,1) Abstract Padé Approximant (APA)

Let us now approximate F by a rational operator R and study the location of the zeros and the peles of this approximation. We perform the necessary caiculations (as described in (1)) to obtain the (1,1)APA in $\binom{0}{0}$ and have to conclude that its first component is undefined in ($\binom{0}{0}$. But the second component is the (1,1) Abstract Pade Approximant to the second component of F .
$R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}:(x, y) \rightarrow\binom{\frac{a x+b y+c x^{2}+d x y+e y^{2}}{a^{\prime} x+b+y+\left(c^{\prime} x^{2}+d^{\prime} x y+e^{\prime} y^{2}\right) \sin \left(\frac{\pi}{2}+0.05\right)}}{\frac{\cos \left(\frac{\pi}{2}-0.05\right)+(x-y)\left[\sin \left(\frac{\pi}{2}-0.05\right)+0.5 \cot \left(\frac{\pi}{2}-0.05\right) \cos \left(\frac{\pi}{2}-n .05\right)\right]}{1+n .5(x-y) \operatorname{cotg}\left(\frac{\pi}{2}-0.05\right)}}$
$=\binom{R_{1}(x, y)}{R_{2}(x, y)}$

$$
\text { with } \begin{aligned}
a & =-0.3025 \operatorname{cotg}\left(\frac{\pi}{2}+0.05\right)+5.5 \\
b & =0.3025 \operatorname{cotg}\left(\frac{\pi}{2}+0.05\right)-3.3 \\
c & =42.3875-5.5 \operatorname{cotg}\left(\frac{\pi}{2}+0.05\right)-0.3025 / \sin ^{2}\left(\frac{\pi}{2}+0.05\right) \\
d & =-111.75+9.6 \operatorname{cotg}\left(\frac{\pi}{2}+0.05\right)+0.605 / \sin ^{2}\left(\frac{\pi}{2}+0.05\right) \\
e & =63.5-3.3 \operatorname{cotg}\left(\frac{\pi}{2}+0.05\right)-0.3025 / \sin ^{2}\left(\frac{\pi}{2}+0.05\right) \\
a^{\prime} & =0.55 \cos \left(\frac{\pi}{2}+0.05\right)-10 \sin \left(\frac{\pi}{2}+0.05\right) \\
b^{\prime} & =-0.55 \cos \left(\frac{\pi}{2}+0.05\right)+6 \sin \left(\frac{\pi}{2}+0.05\right) \\
c^{\prime} & =0.55 \operatorname{cotg}^{2}\left(\frac{\pi}{2}+0.05\right)-10 \operatorname{cotg}\left(\frac{\pi}{2}+0.05\right)+104.75+0.55 / \sin ^{2}\left(\frac{\pi}{2}+0.05\right) \\
d^{\prime} & =-1.1 \operatorname{cotg}^{2}\left(\frac{\pi}{2}+0.05\right)+16 \operatorname{cotg}\left(\frac{\pi}{2}+0.05\right)-15-1.1 / \sin ^{2}\left(\frac{\pi}{2}+0.05\right) \\
e^{\prime} & =0.55 \operatorname{cotg}^{2}\left(\frac{\pi}{2}+0.05\right)-6 \operatorname{cotg}\left(\frac{\pi}{2}+0.05\right)-50+0.55 / \sin ^{2}\left(\frac{\pi}{2}+0.05\right) .
\end{aligned}
$$

The second component R_{2} vanishes on
$y=x+\frac{\cos \left(\frac{\pi}{2}-0.05\right)}{\sin \left(\frac{\pi}{2}-0.05\right)+0.5 \operatorname{cotg}\left(\frac{\pi}{2}-0.05\right) \cos \left(\frac{\pi}{2}-0.05\right)}$
$=x+0.0499 \ldots$
R has two zeros, near to the zeros of F on $y=x+0.05$ ($k=0$), namely in $\binom{0.00252235 \ldots}{0.05250148 \ldots}$ and $\binom{0.49805568 \ldots}{0.54803481 \ldots}$.

Because numerator and denominator of R are polynomial operators we lose the periodicity of F (no infinite number of zeros). The abstract rational approximant has distributed its poles in a very interesting manner.

Looking at F2.1 and F2.2 which show the poles of F (plotted as $000-1$ ines) and those of R (plotted as XXX -lines) in the considered area, we remark that the dominating direction of the first bisector for the poles of F is somewhat found back in the asymptotic behaviour of the poles of R_{1} (hyperhola) and in the situation of the poles of R_{2} on $y=x+39.966 \ldots$ X-axis and Y-axis are marked by dots (...) as well as the asymptotes for the poles of $R_{1}: y=1.305 x-0.015$

$$
y=-1.649 x+0.138
$$

$$
\begin{aligned}
& \text { : }
\end{aligned}
$$

F2. 1

3. Taylor series expansion

Since for functions $f: \mathbb{R} \rightarrow \mathbb{R}$ we can compare the curve-fitting ability of a rational function of degree n in the numerator and degree m in the denominator with that of a polynomial of degree $n+n$, we also calculated the Taylor series expansion T in $\binom{0}{0}$ up to and including $2^{\text {nd }}$ order terms.
$T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}:(x, y) \rightarrow\binom{\frac{-0.55}{\sin \left(\frac{\pi}{2}+0.05\right)}+a x+b y+c x^{2}+d x y+e y^{2}}{\cos \left(\frac{\pi}{2}-0.05\right)+(x-y) \sin \left(\frac{\pi}{2}-0.05\right)-0.5(x-y)^{2} \cos \left(\frac{\pi}{3}-n .05\right)}$

$$
=\binom{T_{1}(x, y)}{T_{2}(x, y)}
$$

$$
\text { with } \begin{aligned}
a & =\frac{1}{\sin \left(\frac{\pi}{2}+0.05\right)}\left(0.55 \operatorname{cotg}\left(\frac{\pi}{2}+0.05\right)-10\right) \\
b & =\frac{1}{\sin \left(\frac{\pi}{2}+0.05\right)}\left(-0.55 \operatorname{cotg}\left(\frac{\pi}{2}+0.05\right)+6\right) \\
c & =\frac{1}{\sin \left(\frac{\pi}{2}+0.05\right)}\left(-0.55 \frac{\left(1+\cos ^{2}\left(\frac{\pi}{2}+0.05\right)\right)}{\sin ^{2}\left(\frac{\pi}{2}+0.05\right)}+10 \operatorname{cotg}\left(\frac{\pi}{2}+0.05\right)-104.75\right) \\
d & =\frac{1}{\sin \left(\frac{\pi}{2}+0.05\right)}\left(1.1 \frac{\left(1+\cos ^{2}\left(\frac{\pi}{2}+0.05\right)\right)}{\sin ^{2}\left(\frac{\pi}{2}+0.05\right)}-16 \operatorname{cotg}\left(\frac{\pi}{2}+0.05\right)+15\right) \\
e & =\frac{1}{\sin \left(\frac{\pi}{2}+0.05\right)}\left(-0.55 \frac{\left(1+\cos ^{2}\left(\frac{\pi}{2}+0.05\right)\right)}{\sin ^{2}\left(\frac{\pi}{2}+0.05\right)}+6 \operatorname{cotg}\left(\frac{\pi}{2}+0.05\right)+50\right)
\end{aligned}
$$

F3.1 which shows the zeros of T_{1} (hyperbola) and T_{2} (straight lines) demonstrates that we do not have to look for zeros of T near the origin. The singularities of F are the cause of this bad behaviour of T.

F3. 1
But T_{2} does also preserve the dominant direction of the first bisector for the zeros of F.

Assume that we got $\binom{0}{0}$, the point in which the approximations were calculated, from a previous iteration-step in a procedure that calculates the $\operatorname{root}\binom{0}{0.05}$ of $F(x, y)=0$.

Calculating the approximation R and equating its numerator to zero would supply a good estimate of (0.05), while the approximation T cannot he used to ohtain an estimate of the root in $\binom{0}{0.05}$.
4. Different Padé-type 2-variable rational approximants

We are going to compare Abstract Pade Approximants (APA) or Abstract Rational Approximants (ARA) for F with Chisholm diagonal (III) approximants (CA) or Hughes Jones off-diagonal (IV,V) approximants (HJA), Lutterodt (VII)approximants (LA), Lutterodt-approximants of type P^{1} (VIII) (LAR ${ }^{1}$), Karlsson and Wallin-approximants (VI) (K1/A) and partial sums of the arstract (IX) Taylor-series development (PS), all in ($\left.\begin{array}{l}0 \\ 0\end{array}\right)$.
The calculation of each type of approximant $\stackrel{P}{Q}: \mathbb{R}^{2} \rightarrow \mathbf{R}$ is based on :

$$
(F Q-P)(x, y)=\sum_{i, j=0}^{\infty} d_{i j} x^{i} y^{i} \text { with } d_{i j}=0 \text { for }(i, j) \in S \subset \mathbb{N}^{2} .
$$

We call S the interpolationset; the choice of S determines the type of approximant. The KWA is unique when the interpolationset S contains in addition to $\{(i, j) \mid i+j \leqslant n\}$, as many points as possible in a given enumeration in \mathbf{N}^{2} (we have used the diagonal enumeration $(0,0),(1,0)$, $(0,1),(2,0),(1,1),(0,2),(3,0), \ldots)$.

The LA need not be unique with respect to the chosen interpolation set (we shall give the interpolationset together with the calculated approximant). For the CA, HJA and LA we denote by $\left(n_{1}, n_{2}\right) /\left(m_{1}, m_{2}\right)$ a rational approximant of degree n_{1} in x and n_{2} in y in the numerator and of degree m_{1} in x and m_{2} in y in the denominator. For the APA and KWA we denote by n / m a rational approximant where the sum of the degrees in x and y is at most n in the numerator and at most m in the denominator. The $n{ }^{\text {th }}$ partial sum of the Taylor series development is indicated by PSn.

Let N be the amount of (unknown) coefficients in the approximant (for rational approximants 1 coefficient can always be determined by a normalisation).

We consider $\mathrm{N}-1$ to be a measure for the "operator-fitting" ability of the calculated rational approximant, and N to be a measure for the "operatorfitting" ability of the considered partial sum of the Taylor-series development.

For CA, HJA and $L A: N=\left(n_{1}+1\right)\left(n_{2}+1\right)+\left(m_{1}+1\right)\left(m_{2}+1\right)$.
For KINA and APA : $N=\frac{1}{2}(n+1)(n+2)+\frac{1}{2}(m+1)(m+2)$.
For PSn: $N=(n+1)(n+2) / 2$.
For increasing N we expect increasing accuracy.

We do remind that for all the types of rational approximants considered, exceft $L A B^{1}$,
a lot of classical properties of Padé-approximants for analytic functions:
$\mathbb{R} \rightarrow \mathbb{R}$ remain valid, now for analytic operators: $\mathbb{R}^{2} \rightarrow \mathbb{R}$, such as:
a) reciprocal covariance: if $F(0,0) \neq 0$ and P / Q is the Padé-type abproximant for F with interpolationset S, then Q / P is the Padé-type approximant for $\underset{F}{\frac{1}{F}}$ with the same interpolationset.
b) if P / Q is a diagonal Padē-type approximant $\left(\left(n_{1}, n_{2}\right)=\left(m_{1}, m_{2}\right)\right.$ or $\left.n=m\right)$ and for $a, h, c, d \in \mathbb{R}: a d-b c \neq 0, c F(0,0)+d \neq 0$, then $(a P+h Q) /(c P+d Q)$ is the Padé-type approximant $\left(\left(n_{1}, n_{2}\right) /\left(m_{1}, m_{2}\right)\right.$ or $\left.n / m\right)$ for $\frac{a F+h}{c F+d}$ with the same interpolatiorset.

But only the CA, HJA, LA type B^{1} and APA have the projection property: equating in the Padé-type approximant P / Q a variable to zero, supplies the Padé-type approximant in the remaining variables.
5. Examples and conclusions
a) Let us consider $F: \mathbb{R}^{2} \rightarrow \mathbb{R}:(x, y) \rightarrow 1+\frac{x}{0.1-y}+\sin (x y)$.

type	approximant	N	exact order of FQ-P
(1) PS 2	$1+10 x+101 x y$	6	$0\left(x y^{2}\right)$
(2) $\mathrm{HJA}(1,1) /(0,1)$	degenerate	6	$0\left(x y^{2}\right)$
	$\frac{1+10 x+\alpha y+(101+10 a) x y}{1+\alpha y}$		$\alpha=\frac{-1000}{101} \Rightarrow 0\left(x y^{3}\right)$
	$1+\alpha y$		
(3) $\mathrm{HJA}(1,0) /(1,1)$	$\underline{1+10 x}$	6	$0\left(x^{2} y\right)$
	1-101xy		
(4) $\mathrm{HJA}(0,1) /(1,1)$	degenerate	6	$0\left(x^{2}\right) \forall \alpha$
	$1-\left(\frac{101+\alpha}{10}\right) y$		
	$\overline{1-10 x-\left(\frac{101+\alpha}{10}\right) y+\alpha x y}$		
(5) $\operatorname{HJA}(1,1) /(1,0)$	$1+10 x+101 x y$	6	$0\left(x y^{2}\right)$
(6) KKA $1 / 1$	$1+10 x-10.1 y$	6	$0\left(x y^{2}\right)$
	1-10.1y		
(7) $\left.\operatorname{la}_{\mathrm{j}}^{\operatorname{La}} \mathrm{l}, 1,1\right) /(0,1)$	$\underline{1+10 x+\alpha y+(101+10 \alpha) x y}$	6	see (2)
	$1+\alpha y$		
(8) $\operatorname{LA}(1,0) /(1,1)$	$\underline{1+10 x}$	6	$0\left(x^{2} y\right)$
(9) APA $1 / 1$	$\underline{1+10 x-10.1 y}$	6	$0\left(x y^{2}\right)$
(10) $C A(1,1) /(1,1)$	degenerate	8	$0\left(x^{2} y, x y^{2}\right)$
	$1+10 x+(10-10 \alpha) y+\alpha x y$		$\alpha=\frac{201}{20} 0\left(x y^{3}\right)$
	$1+(10-10 \alpha) y+(101 \alpha-201) \times y$		

For each of the mentioned approximations of the first example we have plotted the surface $\mid F(x, y)$-approximation $(x, y) \mid$ on $A=[-0.09,0.09] \times[-0.09,0.09](F 6.1-F 5.10)$, nearly all from the same We have also calculated an estimate ε_{r} of $\frac{\sup _{A} \mid F(x, y) \text {-approximation }(x, y) \mid}{\sup _{A}|F(x, y)|}$
which is a measure for the relative error made by approximating $\left(\sup _{A}|F(x, y)| \cong 10\right)$.

We remark that we may call the APA accurate.

150

F5.1
$|F(x, y)-(1+10 x+101 x y)|$
$\varepsilon_{r}=0.73$
viewpoint ($1,2,10$)
(1) (5)

F6. 4
$\left|F(\dot{x}, y)-\frac{1-10.1 y}{1-10 x-10.1 y}\right|$
$\varepsilon_{r}=90.1$
viewpoint $(1,1,100)$ because of

steepness

(4)

F6.3
$\left|F(x, y)-\frac{1+10 x}{1-101 x y}\right|$
$\varepsilon_{r}=0.81$
viewpoint $(1,2,10)$
(3) (3)

$$
\begin{aligned}
& \text { F5.g } \\
& \left|F(x, y)-\frac{x-1.01 y+10 y^{2}+10 x^{2}-20.2 x y}{x-1.01 y+10 y^{2}-10.1 x y+2.01 x^{2} y}\right| \\
& \left.\varepsilon_{r}=0.07 \text { (ecuating } \mid F-\text { ARA } 1 / 2 \mid(0) \text { to } 0\right) \\
& \text { vieupoint }(1,2,10)
\end{aligned}
$$

(16)

F6. 10
$\left|F(x, y)-\left(1+10 x+101 x y+1000 x y^{2}+10000 x y^{3}\right)\right|$
$\varepsilon_{r}=0.6$
viewpoint $(1,2,10)$
(24)

We merely have to compare : ε_{r} for (1) - (9) and remark that at F6.2 and F6.5 the most accurate approximations are gathered; $\operatorname{HJA}(1,1) /(0,1)$ is a bit more accurate than KWA $1 / 1$ and APA $1 / 1$ because a rational function (1,1)/(0,1) fits very well the behaviour of F; however sometimes the approximation cannot be adjusted to F in this way (more complicated operators F) and we can as well at random have chosen worse approximants without knowing it (e.g. $(1,0) /(1,1)$ or $(0,1) /(1,1)$ or (1,1)/(1,0) in this case)

$$
\varepsilon_{r} \text { for (10) - (19) and remark that F6.2 }
$$

and F6.9 gather very good approximations; only $\operatorname{HJA}(1,2) /(0,2)$ is better, partly because of the very degenerate solution and partly because the denominator $1+\alpha y+\beta y^{2}$ can fit F very well
E_{r} for (20) - (24) and remark that PS 4 is very bad in comparison with all the rational approximations, what was to be expected.

We compare the different types of approximants on two other examples. h) Let us consider $F: \mathbb{R}^{2} \rightarrow \mathbb{R}:(x, y) \rightarrow \frac{x e^{x}-y e^{y}}{x-y}=\sum_{i, j=0}^{\infty} \frac{1}{(i+j)!} x^{i} y^{j}$. Here we have in the Taytor series expansion of F a term in every power $x^{i} y^{j}$.

We compare the function values in some points.

		N					
X			0.05	0.25	0.25	0.65	0.65
y			0.25	0.05	0.45	0.45	0.85
$F(x, y)$	$\frac{x e^{x}-y e^{y}}{x-y}$		1.347	1.342	1.924	2.697	3.718
PS 2	$1+x+y+\frac{1}{2}\left(x^{2}+x y+y^{2}\right)$	6	1.339	1.339	1.889	2.559	3.349
$\operatorname{LAB}^{1}(1,1) /(1,0)$	$\frac{1+\frac{1}{2} x+y}{1-\frac{1}{2} x}$	6	1.308	1.343	1.800	2.630	3.222
$\operatorname{LAB}^{1}(1,1) /(1,1)$ ARA $1 / 1$	$\begin{aligned} & \frac{1+\frac{1}{2}(x+y)-\frac{1}{4} x y}{1-\frac{1}{2}(x+y)+\frac{1}{4} x y} \\ & x+y+\frac{1}{2}\left(x^{2}+3 x y+y^{2}\right) \end{aligned}$	8	1.328 1.344	1.328 1.344	2.032 1.958	2.109 2.887	4.153 4.455
CA $(1,1) /(1,1)$	$\begin{aligned} & x+y-\frac{1}{2}\left(x^{2}+x y+y^{2}\right) \\ & \frac{1+\frac{1}{2}(x+y)-\frac{1}{6} x y}{1-\frac{1}{2}(x+y)+\frac{1}{3} x y} \end{aligned}$	8	1.344	1.344	1.936	2.742	3.819
$\operatorname{HJA}(1,1) /(0,1)$	$\frac{1+x+\frac{1}{2} y}{1-\frac{1}{2} y}$	6	1.343	1.308	1.903	2.419	3.679
KWA 1/1	$\frac{1+\frac{1}{2} x+y}{1-\frac{1}{2} x}$	6	1.308	1.343	1.800	2.630	3.222

We see that ARA is good as well for $x>y$ as for $x<y$ (on a not too large neighbourhood), while the other approximations, except $C A(1,1) /(1,1)$, are not. The reason is still the same as in section $5 a:(1,1) /(1,0)$ fits the behaviour of F if $x>y$ and $(1,1) /(0,1)$ fits the behaviour of F if $y>x$. What's more: $F(x, y)=F(y, x)$ and APA and ARA always conserve this property, while the other types of approximants do not.
c) Now consider $F:\{(x, y) \mid y \geqslant-x-1\} \subset \mathbb{R}^{2} \rightarrow \mathbb{R}:(x, y) \rightarrow \sqrt{1+x+y}=$

$$
1+\frac{x+y}{2}+\sum_{k=?}^{\infty}(-1)^{k-1} \frac{(x+y)^{k}}{k!} \frac{(2 k-3)!!}{?^{k}}
$$

where $(2 k-3)!!=(2 k-3)(2 k-1) \ldots 5.3 .1$

We calculate some approximants:
APA $1 / 1$
CA $(1,1) /(1,1)$
HJA $(1,1) /(1,0)$
HJA $(1,1) /(0,1)$
KWA $1 / 1$
$\frac{1+0.75(x+y)-0.1875 x y}{1+0.25(x+y)-0.1875 x y}$
$\frac{1+0.75(x+y)}{1+0.75 x+0.5 y-0.125 x y}$
$\frac{1+0.25 x+y)}{1+0.5 x+0.75 y-0.125 x y}$
$\frac{1+0.75(x+y)}{1+0.25(x+y)}$
$\frac{1+0.75(x+y)-0.1875 x y}{1+0.25(x+y)-0.1875 x y}$

$\operatorname{LA}(1,1) /(1,0)$

The border of the domain of F is nicely simulated by the noles of the APA $k / 1: y=-x-\frac{2 k+2}{2 k-1}$ with $\lim _{k \rightarrow \infty} \frac{-2 k-2}{2 k-1}=-1$

We also compare the function-values in different points:

	$(x, y)=(2,-1)$	$(x, y)=(-0.4,-0.5)$	$(x, y)=(?,-2)$
F	1.4142	0.3162	1.0000
APA $1 / 1$	1.4000	0.4194	1.0000
CA $(1,1) /(1,1)$	1.3077	0.3898	1.0000
HJA $(1,1) /(1,0)$	1.5000	0.4722	1.3333
HJA $(1,1) /(0,1)$	2.0000	0.4571	2.0000

When we compare the approximations that have the same "operatorfitting" ahility (as defined earlier), we see that APA $1 / 1$ and KIA $1 / 1$ are much more accurate than the other types.

References

Sections 1-3 :
(I) Cuyt Annie A.M.

Abstract Padé-approximants in Operator Theory.
Lecture Notes in Mathematics 765: Padé Appr. and its Appl.
(L. Huytack ed.) pp. 61-87, Springer, Berlin, 1979.
(II) Cuyt Annie 4. M.

On the properties of abstract rational (1-point) approximants (ARA). to appear in: Journal of Operator Theory 5(2), spring ' 81.

Sections 4-5 :
(III) Chishoim J.S.R.

N-Variable Rational Approximants.
in : Saff E.b. and Varga R.S.
Padé and Rational approximations : theory and applications.
Academic Press, London, 1977, pp. 23-42.
(IV) Hughes Jones R.

General Rational Approximants in N -Variables.
Journal of Approximation Theory 16, 1976, pp. 201-233.
(V) Hughes Jones R. and Makinson G.J.

The generation of Chisholm Rational Polynomial Approximants to Power series in Two Variables.
Journal of the Inst. of Math. and its App1., 1974, pp. 299-310.
(VI) Karlsson J. and Wallin H.

Rational Approximation by an interpolation procedure in several variables.
in : Saff E.B. and Varga R.S.
Padé and Rational approxinations : theory and applications.
Academic Press, London, 1977. pp. 83-100.
(VII) Lutterodt C.H.

Rational Anproximants to Holomorphic Functions in n-Dimensions.
Journal of Mathematical Analysis and Applications 53, 1976, pp. 89-98.
(VIII) Lutterodt C.H.

A two-dimensional analogue of Padé-approximant theory.
J. Phys. A : Math. Vol. $7 \mathrm{~N}^{\circ} 9,1974$, pp. 1027-1037.
(IX) Rall L.B.

Computational Solution of Nionlinear Operator Equations.
John Hiley and Sons Inc., New York, 1969.

