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For the introduction of abstract Padé-approximants we refer to (I)*and (II). Now
we want to consider an interesting numerical example that can teach us something
about the location of zeros and singularities of a nonlinear operator and its
different approximations (sections 1-2-3).

Also we shall compare abstract Padé-approximants for a nonlinear operator'RzﬂR

with other types of 2-variable rational approximants (sections 4-5).

* Roman figures between brackets refer to a work in the reference list.
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1. Nonlinear operator

et 1,05-y
Z(1-10y) ~ T-10%
2 5 Fl(xs.‘/>
Let F: R >R :(x,y)~ sin(%+0.05+x-y) =< )

cos(%- 0.05 - x+y)

The operator F is singular for x=0.1

or y=0.1

or y=x+(2h&)%+ 0.05 (ke€Z).
The second component F2 vanishes on y =x +kn +0.05 (k€Z).

0.37981434..

0
For k=0 : F=01n { 0.42981434.. )"

0.05) and (

For k<o : the first component F1 does not vanish on y =x +kr +0.05,

For k>0 : F has two zeros x‘; and x; ony=x+kn+ 0,05,

Ony = x + kn+ 0,05 the operator F has two poles, namely in

X] = 0.05 - kr and x; = 0.01.

A characteristic behaviour of Fony = x + kr+ 0.05 for k>0 and k<o
is respectively shown in F1.1 and F1,2, while F1.3 shows the hehaviour
of Fony = x + 0.05 (k=0).

The fact that for k>o : lx"lr - x'i[ decreases for increasing ¥, com-

plicates the calculation of the root x'i of F(x,y) =0.
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2. (1,1) pbstract Padé Approximant (APA)

Let us now approximate F by a rational operator R and study the
location of the zeros and the pcles of this approximation. We perform
the necessary calculations {as described in (I)) to obtain the (1,1})-
APA in (8) and have to conclude that its first component is uncefined
in (8). But the second component is the (1,1) Abstract Padé Approxi-

mant to the second component of F.

ax+by+cx?'+dxy+ey?'

a'x+b'y+(c'x24d 'xyse'y’) sin(’é+0.05)
R: RZLR% (x,y)+

cos (3-0.05)+(x-y) [ 51n(3-0.05)+0.5cota(5-0.05)cos (3-0.05)]

140.5 (x-y) cotg(’;_-o.OS)
Ry (x5¥)
) <R2(x,y)>
with a=-0.3025 cotg(%+0.05) +5.5
b =0.3025 cotg(l‘z+o.05) -3.3
¢ =42.3875 - 5.5 cotg(5+0.05) - 0.3025/sin2(-72r-+0.05)

d=-111.75 +9.6 cotg(5+0.05) +0.605/s1'n2(,}+o.05)

e=63.5-3.3 cotg(—%+0.05) -0.3025/51‘n2(-’2'-+0.05)

a'=0.55 cos(5+0.C5) - 10sin(5+0.05)

b'=-0.55 cos(%+o.05) +65in(z +0.05)
¢'= 0.55 cotg’(}+0.05)-10cotg(}+0.05) +104.75 +0.55/sin° (§+0.05)

d"= -1.1cotg?(} +0.05) + 16cotg(~12'-+0.05)—15-1.1/s1'n2(%-+0.05)

e'= 0.55 cotgz(g+o.05)-ecotg(-’2‘-+o.05)-5o +0.55/s1’n2(%+0.05).
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The second component R2 vanishes on

cos(%-0.0S)

y=x+

sin(%-0.05)+0.5cotg(%--O.OS)COS(%-O.OS)

=x +0.0499...

R has two zeros, near to the zeros of F on y =x+0.05 (k=0), namely

.. ,0.00252235.. 0.49805568...
in (5. 05250148...) 2nd (p.5ag03481.. )

Because numerator and denominator of R are polynomial operators we
lose the periodicity of F (no infinite number of zeros). The abstract
rational approximant has distributed its poles in a very interesting

manner.

Looking at F2.1 and F2,2 which show the poles of F(plotted as N00-11ines)
and those of R(plotted as XXX-1ines) in the considered area, we remark that
the dominating direction of the first bisector for the poles of F is
somewhat found back in the asymptotic behaviour of the poles of R1
(hyperbola) and in the situation of the poles of R2 on y=x+39,966,,,

X-axis and Y-axis are marked by dots (...) as well as the asymptotes

1.305x - 0.n15

"

for the poles of Rl: y
-1.649x + 0.138

n

y
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3. Taylor series expansion

Since for functions f: R - R we can compare the curve-fitting ability
of a rational function of degree n in the numerator and degree m in
the denominator with that of a polynomial of degree n+m, we also
calculated the Taylor series expansion T in (8) up to and including

an order terms.

-0.55 2 >
+ax +by +cx” +dxy +ey

sin{x+0.05)
T:JRZ»RZ:(x,y)-’ 2

cos(}-0.05) + (x-y) sin(}-0.05) - 0.5 (x-y)°cos(-0.05)

(Tl(x’)')
Tg(xa.Y)

with a = ——L—— (0.5 cotg(}+0.05)-10)

sin(-%+0.05)

1 T
b= ——— (-0.55 cotg(x+0.05)+6
sin(} +0.05) 2 )
. (1+cos? (5 +0.05))
c= e (-0.55 +10 cotg(%+0.05) - 104.75)
sin(z+0.0) sin(} +0.05)
2,7
1 (1 +cos™(x+0.05))
47— (L] 2 - 16 cotg(}+0.C5) +15)
sinz +0.05) sin?(§+0.05)

(1 +c052(-’é+0.05))

1
@5 —— e (-0.55 +6 cotg{sy+0.05) +50
sin(}+0.05) sin(§ +0.05) oz )



144

F3.1 which shows the zeros of T1 (hyperbola) and T2 (straight lines)
demonstrates that we do not have to look for zeros of T near the origin.

The singularities of F are the cause of this bad behaviour of T.

Y
=
[3
=
®
v
/ "
5
-
0
[

T Emm e e

F3.1
But T2 does also preserve the dominant direction of the first bisector

for the zeros of F.

Assume that we got (8), the point in which the approximations were cal-

culated, from a previous iteraticn-step in a procedure that calculates
0

the root (j o) of F(x,y) =0.

Calculating the approximation R and equating its numerator to zero

would supply a good estimate of (g 05)' while the approximation T cannot

be used to ohtain an estimate of the root in (8 05)'
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4. Different Padé-type 2-variable rational approximants

We are going to compare Abstract Padé Approximants (APA) or Abstract

Rational Approximants (ARA) for F with Chisholm diagonal (IIl) approximants
(CA) or Hughes Jones off-diagonal (IV,V) approximants (HJA), Lutterodt (VII)-
approximants (LA), Lutterodt-approximants of type rl (VIII) (LARI),

Karlsson and Wallin-approximants (VI) (¥WA) and partial sums of the
. 0

abstract (IX) Taylor-series development (PS), all in (0).

S:RZ»R is based on :

(FO-P)(x,y) = T d.. x' y' with d,.=0 for (i,j) € s c N
i e (14 ij

The calculation of each type of approximant

We call S the interpolationset; the choice of S determines the type of
approximant. The KWA is unique when the interpolationset S contains in
addition to {(i,Jj)]i+j < n}, as many points as possible in a given
enumeration in Nz (we have used the diagonal enumeration (0,0), (1,0),
(0,1),(2,0),(1,1),(0,2),(3,0), ...).

The LA need not be unique with respect to the chosen interpolation set (we
shall give the interpolationset together with the calculated approximant).
For the CA, HJA and LA we denote by ("1’”2)/(m1’m2) a rational approxi-
mant of degree n in x and n, in y in the numerator and of degree my in x
and m, in y in the denominator. For the APA and KWA we denote by n/m a
rational approximant where the sum of the degrees in x and y is at most n
in the numerator and at most m in the denominator. The nth partial sum of
the Taylor series development is indicated by PSn.

Let N be the amount of (unknown) coefficients in the approximant (for
rational approximants 1 coefficient can always be determined by a
normalisation).

We consider N-1 to be a measure for the “operator-fitting" ability of the
calculated rational approximant, and N to be a measure for the "operator-
fitting" ability of the considered partial sum of the Taylor-series

development.
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For CA, HJA and LA : N =(n1+1)(n2+1)+(m1+1)(m2+1).
For KNA and APA : N =2(m#1)(n+2) +5(m+1) (m+2).
For PSn : N=(n+l1)(n+2)/2.

For increasing N we expect increasing accuracy.

We do remind that for all the types of rational approximants considered, exceft LABl,
a lot of classical properties of Padé-approximants for aralytic functions:
R - R remain valid, now for analytic operators: ]R2->1R » such as:
a) reciprocal covariance: if F(0,0)#0 and P/Q is the Padé-type aoproxi-

mant for F with interpolationset S, then Q/P is the Padé-type approxi-

mant for ; with the same interpolationset.
b) if P/Q is a diagonal Padé-type approximant «nl,n?) = (ml,mz) or n =m)

and for a,bh,c,d€ R: ad-bc#0, cF(0,0)}+d=0,

then éii+hQ)/(cP+dQ) is the Padé-type approximant «nl’"?)/(ml’mz) or n/m)

a

for —— with the same interpolatiorset.
cF+d

But only the CA, HJA, LA type Bl and APA have the projection property:
equating in the Padé-type approximant P/Q a variable to zero, supplies

the Padé-type approximant in the remaining variables.
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5. Examples and conclusions

a) Let us consider F :

type

approximant

IRZ» R: (x,y) 5 14

X

0.1-y

@ rs 2

(@) HA(1,1)/(0,1)

B) Wr(1,0)/(1,1)

(@) Hia(0,1)/(1,1)

(5) HIA(1,1)/(1,0)

@ KA 1/1

@) La@1,1)/(0,1)
J
_$_°..1.
LA(1,0)/(1,1)
J

1'

;

@ APA 1/1

CA(1,1)/(1,1)

1410x +101xy

degenerate
1+10x +ay + (101 + 10a)xy

1+ay
1+10x

1-101xy

degenerate

1- (05

101+a
o

1-10x - )y +axy

1+10x +101xy
1+10x ~-10.1y
1-10.1y

1+10x +ay + (101 + 10a)xy

1 +ay

1+10x
1-101xy

1+10x -10.1y
1-10.1y

degenerate

1+10x + (10-10a})y +axy

1+(10-10a)y + (101le - 201)xy

+ sin (xy).
N exact order of fQ-p
6 0(xy%)
6 | 0(xyd)
5221000 o 3,
6 | o(x%y)
6 0(x%)¥er
6 | 09
6 | oxd
6 see @
6 | oty
6 | oxyd)
8 O(xzy ,xyz)

@ =£o_1. =>D(xy3)
101



@ Ara 1/2

®®

HIA(1,2)/(0,2)
HIA(2,1)/(0,2)

LA(1,2)/(0,2)
i
LA(2,1)/(0,2)
j*:.

1

KWA 172

rPA 2/1

KWA 2/1

PS 3
CA(2,2)/(1,1)
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cdegenerate

1410x4ay+( 1014100 ) xy+£y 2+ (108+101a+1000) xy®

l+ay+8y?

degenerate
1+10x +ay + (101 + 10a)xy

l+ay

1+10x+ay+(101+10a ) xy+ 8y + (108+101a+1000) xy?

l+ay+8y2

with g=-10°(10+a)/101

1+10x -7-0—1—1000 Y +%8\-]1'— Xy

1000
1 “ToT y

1+10x -10.1y

1-10.1y
2 2
x-1.01y +10y™ +10x"~ - 20.2xy

x - 1.01y + 10y - 10. 1xy + 2.01xy%

1+10x __mTIOOO y +% Xy

1000
Y-mr Y

1000 201
1+10x-—m-1-y+i—o—lxy

00
1000

1+10x+101xy+1000xy?

degenerate

1+(10+a)x-10y+(s+1)xy+10ax2—10xy2+

14

10
13

(106+101a)x%y+(1016+1000a)x°

2
y

1 +ax - 10y +8xy

0(xy3)
a=-10 and 8=0
~ 03y

0(xy?)

o =21000 6, 3)

see <:)

o(xy®)

0(xy%)

0(xy®)

O(xy3)

0(xy’)

0(xy3)
o(x%y?)

a=0 and g=0
= 0y
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KWA 3/1

LA(2,2)/(1,1)

APA 3/1

PS 4

Lael(1,1)/(0,1)

Lasl(1,0)/(1,1)
B (1, )/(0 2)

Lasl(2,1)/(0,2)
1

LAB*(2,2)/(1,1)
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1+10x - 10y +xy - 10xy®
1-10y
no interpolationset satisfying
description in (VII)
1+10x - 10y +xy - 10xy?
1-10y
1+10x + 101xy + 1000xyZ + 10000xy

the prescribed interpolationset
supplies a system of linearly
dependent equations

the

3

13

13

13

15

13

For each of the mentioned approximations of the first example we have

plotted the surface |F(x

y-approximation (x,y)]| on

A=1-0.09,0.09] x [-0.09,0.09] (F6.1-F6.10), nearly all from the same

viewpoint.

We have also calculated an estimate €, of

sup|F(x

,y)-approximation(x,y) |

sup |F(x
A

which is a measure for the relative error made by approximating

(sup|F(x,y)| =10).
A

We remark that we may call the APA accurate.



sl
F6.1

[F{x,¥) - (1+10x+101xy)|

L =0,73

viewpoint (1,2,10)

o6

F6.4

Flxay) 12101y
1-10x-10.1y

e =90,1
viewpoint (1,1,100) because of

steepness

®
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F6.2
1+10x "II%QIQ y +§—g} xy
F{x,y)- T —
l-qmr vy
:r=0.06

viewnoint (1,2,10) @ @ @ @ @

F6.3

| Foon - it |

€. = 0.81
viewpoint (1,2,10}

(ORO)
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l F(x,y) - 1+10x-10. 1y }
1-10.1y }

€, = 0.09

viewpoint (1,2,10)

®0®

I+10x-IéTy+l%§-l.xy

Flx.y)

L-qory

€. = 0.73

viewpeint (1,2,10)

6.7
F6.8
1+10x - 10y + xy - 10xy s
F(x,y) - »* 10
Fix.,y) - (1 +10x+101xy+1000xy2) 1-10y
¢ =0.66 3 1+10x-10y+xy~10xy?
r €. =0.9x10"" for { F{x,y) =
r 1-10y

viewpoint (1,2,10)

® 06

viewpoint (1,2,1} because of flatness

O 66 6
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2

x - 1.0y + 10y% + 10x2 - 20.2xy

F(x,y) -

il
x - 1.01y + 10y ~ 10. Ixy +2.01x2_v

= i 0
€ =0.07  (ecuating |F -ARA 1/2| (g) to 0)

viewpoint (1,2,10)

F6.10

\F(x,y) - (1 +10x +101xy +1000xy° + 10600xy" )

€. = 0.6

viewpoint (1,2,10)

@
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We merely have to compare : € for (:) - (:) and remark that at F6.2
and F6.5 the most accurate approximations are gathered; HJA(1,1)/(0,1)
is a bit more accurate than KWA 1/1 and APA 1/1 because a rational
function (1,1)/(0,1) fits very well the behaviour of F; however some-
times the approximation cannot be adjusted to F in this way (more
complicated operators F) and we can as well at random have chosen
worse approximants without knowing it (e.g. (1,0)/(1,1) eor (0,1)/(1,1)
or (1,1)/(1,0) in this case)

e, for - and remark that F6.2
and F6.9 gather very good apprcximations; only HJA(1,2)/(0,2) is better,
partly because of the very degenerate solution and partly because the
denominator 1+ay+8y2 can fit F very well

Ep for - and remark that PS 4
is very bad in comparison with all the rational approximations, what

vas to be expected.

We compare the different types of approximants on two other examples.

X_ .y © I
b) Let us consider F: R P : (x,y) X Y& - L B
xy i,d=0 (i+3)!

Here we have in the Taylor series expansion of F a term in every power
x1yJ.

We compare the function values in some points.



N
X 0.05 .25 10,25 | 0,65 | 0,65
y 0.25 .05 | 0.45 { 0,45 | 0.85
X _yeY
F(x,y) i 1.342 | 1.342| 1.924| 2.697| 3.718
PS 2 Lextye 5 (xoxyry?) 6| 1.339| 1.339( 1.889 | 2.559| 3.349
1 1 +%x +y
LAB*(1,1)/(1,0) —_—T 6 | 1.308 [ 1.343] 1.800| 2.630| 3.222
1'?)(
1
1 1 +%(x+y) -y
LAB*(1,1)/(1,1) | —— "2 8 | 1.328]1.328| 2.032| 2,109 4.153
1 -%—(x+y) +%—xy
Xty +%(x2 +3xy +y2)
ARA 1/1 1101 1.344;1.344( 1,958 2.887| 4,455
X+y-vlg(x2+xy+y2)
1 +-%(x+y) -%xy
CA(1,1)/(1,1) —c TS5 |8 1.384|1.344| 1.936| 2.742 | 3.819
1
1 -5(x+y) +%—xy
1+x +%y
HJA(1,1)/(0,1) _ 6| 1.383]1.308| 1.903| 2.419] 3.6n9
1
1'2-y
1+%x+y
KWA 1/1 _ 6| 1,308 1.343} 1.800| 2.630 3.222
1 -%-x

He see that ARA is good as well for x>y as for x<y (on a not too large

neighbourhood), while the other approximations, except CA(1,1)/(1,1), are

not. The reason is still the same as in section 5a:(1,1)/(1,0) fits the

behaviour of F if x>y and (1,1)/(0,1) fits the behaviour of F if y>x,

What's more: F(x,y)=F(y,x) and APA and ARA always conserve this property,

while the other types of approximants do not.
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c) Now consider F:{(x,y)|y=-x-1} c]R2->1R H(xay) > V1+x+y =

xty o ko1 O (k-3
1+—+ Z (-1) —
2 k=2 k! 2

where (2k-3)11 = (2k-3)(2k-1) ... 5.3.1

We calculate some approximants:

1+ 0.75 {x+y)
APA 1/1 ———
1+ 0.25 (x+y)

1+ 0.75 (x+y) - 0.1875 xy

CA (1,1)/(1,1)
1+ 0.25 (x+y) - 0.1875 xy

1+ 0.75x + 0.5y - 0.125 xy
HIA (1,1)/(1,0)

1+ 0.25 x

1+ 0.5x + 0.75y - 0.125 xy

HIA (1,1)/(0,1) 1+0.25y
+ 0.

75 (x+y)
KWA 1/1

.75 (x+y) - 0.1875 xy

LA (1,1)/(1,1)

b

LA (1,1)/(1,0)

J’L
i
A (1,1)/(M1)

L
j 1+0.25y
&

"i

0

1+0.25 (x+y)
0
0

.25 (x+y) - 0.1875 xy

1+ 0.75x + 0.5y - 0,125 xy

1 +0.25 x

1+ 0.5x + 0,75y - 0,125 xy
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The border of the domain of F is nicely simulated by the noles of the
2k+2 -2k-2

APA k/1 @ y = = X = ——  with lim
2k-1 k>oo 2k-1

= -1

We also compare the function-values in different points:

(x,¥)=(2,-1) [(x,y)=(-0.4,-0.5) | (x,y)=(2,-2)
F 1.4142 0.3162 1.0000
APA 1/1 1.4000 0.4194 1.0000
CA (1,1)/(1,1) 1.3077 0.3898 1.0000
HIA (1,1)/(1,0) 1.5000 0.4722 1.3333
FIA (1,1)/(0,1) 2.0000 0.4571 2.0000

4hen we compare the approximations that have the same "operator-

fitting" ahility (as defined earlier ), we see that APA 1/1 and

VWA 1/1 are much more accurate than the other types.
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