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Abstract 

In [3] (n,m) multivariate Pad6 approximants were introduced by 

means of a shift of the degrees in numerator and denominator over nm 

This definition is repeated here in section 3. In various papers many 

properties of those Pad~ approximants were proved; the analogy with the 

univariate case is remarkable, Here we show that the shift of the 

degrees over nm also arises in a natural way if we want to preserve 

some numerical algorithms or some geometrical pictures. Thus the paper 

provides new insights into the mechanism of the multivariate Pad~ 

process, and also some compact formulas for the mult±variate Pad~ 

approximant itself. 

I. The s-algorithm and the qd-algorithm 

Consider a series ~ t. in ]R and also the sequence (si)i8 N 
i=o l 

o f  i t s  p a r t i a l  s u m s ;  s o  s .  = t + . . . +  t .  
1 0 1 

Input of the s-algorithm are the elements 

computations: 

s, . We perform the following 
l 

a) s(~ ) _  = o 

(i) 
S = S, 
0 1 

i = 0,I,... 

b) 4]J -I) :0 j = 01 .... 
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(i) _(i+1) I j = 0,1 .... 

c) sj+1 = ~j-1 + s!i+1)-~! i) i = -j,-j+1 .... 

3 3 

The index j refers to a column while i refers to a diagonal in the 

E-table. If the algorithm does not break down the following property 

can be proved for the s-algorithm. The proof is very technical and can 

be found in [I pp. 44-46]. We denote by As k = Sk+ I - s k . 

Theorem 1.1.: 

With s. = 0 for i < o 
1 

si+ j --- s i 

Asi+ j ..- Asi+ I As i 

(i) 
s2j = 

Asi+2j-1 Asi+ j Asi+j-1 

I . . . I 

Asi+ j ... As i 

Asi+2j_ 1 -.. Asi+j_ I 

The relation of the s-algorithm with the multivariate Pad& process and 

the geometrical picture that we will set up is explained in the following 

sections. 

Input of the qd-algorithm are the terms t. . One performs the 
1 

following calculations: 

a) e (i) = 0 q~i) _ ti+1 i = 0,1 ... 
o ' t. ' 

1 
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b) e (i) _(i+I) + (i+I) (i) 
j = qj ej-1 - qj i = 0,1,2 .... j : 1,2 .... 

(i) _(i+I) ° e (i+I) / e (i) i = 0,1,2 j = 1 2 c) qj+1 = qj j j . . . . . . . . .  

Again the index j refers to a column while i refers to a diagonal. 

(i) and e (i) exist, one can prove the following If all the qj j 

property [2]. 

Theorem 1.2.: 

For s. = t + ...+ t. , 
1 O 1 

ti+11 q~i+1 )I e~i+1 

(i) _ _ 

e 2 j = s i + ~  1 1 11 

The qd-algorithm will also be used to set up a certain geometrical 

picture and to provide the multivariate Pad~ approximants defined in 

[3]. Let us denote the partial numerators of the continued fraction 

given above by 

(i+I) 
aki(k = O,...,2j) ; so aoi = si ' ali = ti+1 ' aki = -qk 

2 

(i+I) if k is odd if k is even and aki = -ek_ I 

2 

2. Geometrical picture 

Let us now construct with the 2m + I 

vectors 

(k) t 
s = (Sn_m+k,ASn_m+ k .... ,ASn+k_ I ) in 

for k = o,...,m . With the partial numerators 

construct the vectors 

numbers Sn_m,...,Sn+ m the 

~R m+1 

ao,n_m,...,a2m,n_m we 
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t (k) = (O, ..... O~ak,n_m,1,-1,O ..... O) in m 2m+2 

k times 

for k = o,...,2m-I , and the vector 

(2m) 
t = (0 ..... O~a2m, n_m,1) 

2m times 

A~ We can draw an m-dimensional hyperplane through the points 

s(k) (k=o,...,m) in ~m+1 Suppose that the vector normal to that 

hyperplane, is given by u = (u ° ..... Um) t 

Then we have 

m 

u.s ~k" ~ : Uo. Sn_m+1~ + E u.± ASn_m+k+i_ I = 0 k = o ..... m (I ) 
i=I 

We call (Vm,O,...,O) the point where that hyperplane intersects the 

first axis. Then also 

U . V : U.S 
O m 

(k) (2) 

From (I) and (2) we obtain 

m u. 
Sn_m+ k = - Z _~l k = o ..... m i=i u O ASn-m+k+i-1 + v m 

which we can write as a linear system of equations 

A iv m = Jn -- ( 3 ) 

-ui+ I 
where v~ - ( i  = o . . . . .  m - l )  a n d  t h e  m a t r i x  A i s  g i v e n  b y  

1 U 
O 
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A = 

I ASn_ m ASn_m+ I ... ASn_ I I 1 

As n ... ASn+m_ I I 

Cramer~s rule for the solution of such a system then gives: 

As ... As s 
n-m n-1 n-m 

V ---- 
m 

As n ... ASn+m_ I s n 

As ... As I n-m n-1 

As n ... ASn+m_ I I 

So clearly S2m(n-m) is the last unknown of the system of equations (3) 

Let us draw a picture in the case m = I . Then s (O) and s (I) are 

two vectors in ~2 through which a straight line is drawn and v I is 

the abscis of the intersection with the first axis. 

hSn_ I 

As 
n 

Sn- I Sn Vm 

So v m results from extrapolating certain differences to zero. That 

is why we expect v m to be more efficient the larger n is and to be 

an estimate of the limit of the sequence (si)i 6 ~ if it exists. 

B) If the vector u = (Uo,...,u2m+1) in ~2m+2 is in the l-di- 

mensional subspace orthogonal on {t(k) Ik = 0 .... ,2m} , then 



(k) u.t = 0 k = o,...,2m 
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(4) 

which we can write as a linear system 

Bu = 0 (5) 

where the (2m+1)×(2m+2) matrix B is given by 

B = 
a I -I 1 

o,n-m 0 
al ,n-m I -I 

O 

". ". -I 

a2m, n-m I 

In [8] Miklosko proved that 

t + ... + t + o n-m 

tnm+11 :nm+1 e n-m+  I .nm+ I 

-u 1 is equal to 
U 
O 

or in other words that it is the first unknown 

of the linear system of equations 

C I!21ml If° m I 
where C is given by 

C = 
~ l"~n -I . 0 / 

a 2 m , n _ m  " " 1 

v I 

(6) 



(n-m) 
So E2m 

101 

is also the first unknown of the system of equations (6). 

3, Multivariate Pad& approximants 

Let f (x) = 

oo 

k 
Z CkX 

k=o 
where x = (Xl, .... xz) and where 

k 
CkX = 

k I kz 
.x~ 

k1+...+kz= k Ck I ...k,~, Xl "" 

Let p(x) = 
nm+n i nm+m 
Z a. x and q(x) = Z 

i=nm l j=nm 
b. x j where 
3 

i i I il 
aix = ~ a. x I . . .x£ 

ii+...+i£=i 11 . . .iz 

Jl J£ 
x j = Z b x I . . .x~ 

bj J1+'''+J£ =j jl...j £ 

Definition 3.1.: 

(f.q-p) (x I ..... x~) = 
k1+...+kiAnm+n+m+1 

then the irreducible form Rn,m(X) of 

multivariate Pad& approximant for 

If p (x) and q (x) satisfy 

k I k£ 

dk I ...kzXl -- .x Z 

p(x) is called the 
q(x) 

f(x I ..... x£) 

(n,m) 

The shift of the degrees in p(x) and q(x) by nm , has already been 

motivated in [4]. More about there multivariate Pad& approximants can 

also be found in [3]. We shall now see that the shift of the degrees 

does also match the geometrical picture and that this geometrical 
p(x) 

picture provides some very compact formulas for q(x) 

i 
k 

(n-m) if s, = E CkX In [5] we proved that ~ (x) was given by S2m z 
q k=o 

was the multivariate partial sum of the multivariate Taylor series 

(n-m) is also the f(x) , i.e. if t i = ci xi . Here we have seen that e2m 

last unknown of the system (3) which results from extrapolation to zero, 

(n-m) is the intersection-point of the interpolating hyper- since e2m 

plane through the s (k) and the first axis. This enables us to write 

down the following compact expression for ~(x) 
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P(x) = 
q 

A-I Ci ml ]m 
i 

k 
• = Z c~ x with s I k=o K 

(n-m) 
We have also shown that e2m 

equations (6), so another compact formula for [(x) 
q 

(7) 

is the first unknown of the system of 

is given by [ ISnm)) 
qE(x) = c -1 o 

0 I 

(8) 

For the univariate Pad& approximants formula (7) can be found in [6] 
.th 

where s. is the l partial sum of the univariate Taylor series, 
1 

and formula (8) is a consequence of theorem 1.2. and Miklosko's result 

where t i is the term of degree i in the univariate Taylor series. 

So if we want to preserve the univariate geometrical picture, we can 

for instance "define" the multivariate Pad& approximant by means of 

(7) or (8). This automatically results in a shift of the degrees in 

P(Xl,...,x ~) and q(x I ..... xz) because we have proved here the 

validity of (7) and (8) for the multivariate Pad& approximants given 

in definition 3.1. 

As a consequence, the conclusion is now that the most natural way 

to generalize the concept of Pad& approximant for multivariate functions 

is by means of definition 3.1. 
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