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Abstract

In [3] (n,m) multivariate Padé approximants were introduced by
means of a shift of the degrees in numerator and dencominator over nm
This definition is repeated here in section 3. In various papers many
properties of those Padé approximants were proved; the analogy with the
univariate case is remarkable. Here we show that the shift of the
degrees over nm also arises in a natural way if we want to preserve
some numerical algorithms or some geometrical pictures. Thus the paper
provides new insights intc the mechanism of the multivariate Padé
process, and also some compact formulas for the multivariate Padé

approximant itself.

1. The e-algorithm and the gd-algorithm
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Input of the e-algorithm are the elements s, - We perform the following

computations:
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The index j refers to a column while 1 refers to a diagonal in the
e-table. If the algorithm does not break down the following property

can be proved for the e-algorithm. The proof is very technical and can
be found in [1 pp. 44-46]. We denote by Ask = Sp4q " Sy -

Theorem 1.1.:
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The relation of the e-algorithm with the multivariate Padé process and
the geometrical picture that we will set up is explained in the following
sections.

Input of the gd-algorithm are the terms ti . One performs the
following calculations:

. t.
a) e =0, q{l) _ i+t i

0,1,...
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(1) _ _(i+1) (i+1) _ (i)
BY eyt =gy T ey 9 i=0,1,2,.. 5=1,2,...

(1) _ _(i+1) _ _(i+1) (i) L .
c) qj+1 = qj ej / ej i=0,1,2,... i=1,2,..
Again the index j refers to a column while i vrefers to a diagonal.
If all the qgl) and egl) exist, one can prove the following
property [2].
Theorem 1.2.:
For s, = t_ + ...+ t, ,
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€2j = s, + e

The gd-algorithm will also be used to set up

picture and to provide the multivariate Padé

a certain geometrical

approximants defined in

[3]. Let us denote the partial numerators of the continued fraction
given above by
_ oL _ _ (i+1)
aki(k =0,...,273) ; so g = S5 0 @qy = ti+1 r 8y qE
2
if k is even and a,, = -e(l+1) if k is odd.
ki k-1
2
2. Geometrical picture
Let us now construct with the 2m + 1 numbers Shem’* " Snem the
vectors
(k} _ t . m+1
s (Sn-m+k'&sn—m+k""'&Sn+k—1) in R
for k = o,...,m . With the partial numerators A, n-m’ """ 3m,n-m e

construct the vectors
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k . 2m+2
TS (0,...,0,a ' ,1,-1,0,...,0) in R
k times
for k = 0,...,2m-1 , and the vector
(2m)
t (O*""O’aZm,n—m’1)
2m times

A) We can draw an m-~dimensional hyperplane through the points
s<k)(k=o,...,m) in :mm+1 Suppose that the vector normal to that
. . t
hyperplane, is given by u = (uo,...,um) .
Then we have
u s(k) =u_.s + ? u, As =0 k =o,. m (M
* o “n-m+k -1 i n-m+k+i-1 reecy .

i

We call (vm,O,...,O} the point where that hyperplane intersects the

first axis. Then also

o n . . (2)

From {1) and (2) we obtain

m
= - L == . + = -
sn-m+k ~q U Asn—m+k+1—1 Vi k o (I

which we can write as a linear system of equations

Vo Sn-m
A . = . (3}
\% 8
m n
i+ . . . :
where v, = —Ei—l (i =o0,...,m1) and the matrix A 1is given by
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n-m
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As

...

n-m+1

e ASn+m-1

Cramer's rule for the solution of such a system then gives:

So clearly

Let
two
the

So

As ‘e As s
-m n-1 n-m
As een Asn+m—1 S,
V m
m
As . .. As 1
-m -1
Asn v ésn+m~1 1
(n-m) . R
€om is the last unknown of the system of equations (3).
us draw a picture in the case m = 1 . Then 5(0) and 5(1) are
vectors in ZRZ through which a straight line is drawn and vy is
abscis of the intersection with the first axis.

Vi results from extrapolating certain differences to zero. That

is why we expect

an estimate of the limit of the sequence

B)

mensional subspace orthogonal on

If the vector

Vo to be more efficient the larger n is and to be

(si)i €W if it exists.
— s 2m+2 X . 3
u = (uo,...,u2m+1) in R is in the 1-4i
{t‘k)lk =0,...,2m} , then



u.t =0 X =0,...,2m (4)

which we can write as a linear system

Bu = 0O (5)

where the (2m+1)x{(2m+2) matrix B is given by

a, n-m 1 -1
’ 0]
a 1 -1
1,n-m
B = o) ;
* . -1
a2m,n-m !
In [8] Miklosko proved that
(n-m+1) (n-m+1)
n-m+1 94 €4
t + ... + t + - ] - =~ ce. =
e} -m
]
-u,
is equal to o ¢ ©°F in other words that it is the first unknown vy
o
of the linear system of equations
V4 ao,n-—m
. O
C . = . (6)
YV om+1 °©

where € is given by

. ‘e 0
C = a, . Tl
,D-m . N
. .. -1
- .
C s~ S
. N
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¢ (n=m)

om is also the first unknown of the system of equations (6).

So

3. Multivariate Padé approximants

Let £(x) = I ¢ xk where x = (%X,,...,%,) and where
-~ k 1 L
k=0
k k
k 1 2
c, X = X C Xy, vonX
k K ...tk =k 10Ky ] 2
1 %
nm+n 5 nm+m .
Let pix) = I a, x and gix} = £ b, x7 where
i=nm d=nm J
. i i
alxl S z a., . x11 ..xzQ
i i,

; J i
bjxj = z bj 3 x11...x9v2 .
Jqte--+3 =3 1 2
Definition 3.1.: If p(x) and g(x) satisfy
ki Ry

(£.q=p) (R, .00 ,%,) = z d X, a..X

1 % k1+...+k£2nm+n+m+1 k1"'k2 ! .
then the irreducible form R, m{x) of g%g% is called the {(n,m)
multivariate Padé approximant for Elxgreeaaxy) «

The shift of the degrees in p(x) and g{(x) by nm , has already been
motivated in [4]. More about there multivariate Padé approximants can
also be found in [3]. We shall now see that the shift of the degrees
does also match the geometrical picture and that this geometrical

picture provides some very compact formulas for g%g% .

{n-m) s k
A sy = Boox
was the multivariate partial sum of the multivariate Taylor series

£(x) , i.e. if t; = cixi . Here we have seen that Eég_m) is also the
last unknown of the system {3) which results from extrapolation to zero,

(n-m) is the intersection-point of the interpolating hyper-

2m
plane through the s(k) and the first axis. This enables us to write

In [5] we proved that % (x) was given by ¢

since ¢

down the following compact expression for g(x)
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n-m
Bxy =| 2™ ) (7
q .
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n
m
. i k
with s, = I ¢, X .
i k=0 k

{n-m)
2m
equations (6), so another compact formula for g(x) is given by

We have also shown that ¢ is the first unknown of the system of

{x}

I
(@]
o

(8}

o) ge)

For the univariate Padé approximants formula (7) can be found in [6]
where s, is the it partial sum of the univariate Taylor series,
and formula (B) is a conseguence of theorem 1.2. and Miklosko's result
where ty is the term of degree i in the univariate Taylor series.
So if we want to preserve the univariate geometrical picture, we can
for instance "define" the multivariate Padé approximant by means of
(7) or (8). This automatically results in a shift of the degrees in
p(x1,...,x2) and q(x1,...,xz) because we have proved here the
validity of (7) and (8) for the multivariate Padé approximants given
in definition 3.1.

As a consequence, the conclusion is now that the most natural way
to generalize the concept of Padé approximant for multivariate functions
is by means of definition 3.1.
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