To my father Pierre F.M. Cuyt.

ABSTRACT PADÉ-APPROXIMANTS IN OPERATOR THEORY **
by
ANNIE A.M. CUYT
DEPARTMENT OF MATTHEMATICS
UNIVERSITTY OF ANTWERP
UNIVERSITEITSPLEIN 1
B - 2610 WILRIJK (BELGIUM)

The use of Padé-approximants for the solution of mathematical problems in science has great development. Pade-approximants have proved to be very useful in numerical analysis too : the solution of a nonlinear equation, acceleration of convergence, numerical integration by using nonlinear techniques, the solution of ordinary and partial differential equations. Especially in the presence of singularities the use of Padē-approximants has been very interesting.

Yet we have tried to generalize the concept of Padé-approximant to operator theory, departing from "power-series-expansions" as is done in the classical theory*. A lot of interesting properties of classical Pade-approximants remain valid and the classical Padé-approximant is now a special case of the theory. The notion of abstract Padé-table is introduced; it also consists of squares of equal elements as in the classical theory.

[^0]0. NOTATIONS

R_{0}^{+}	\{positive real numbers\}
X, Y	always normed vectorspaces or Banach-spaces or Banach-algebras with unit
$L(X, Y)$	\{linear bounded operators L: $X \rightarrow Y$ \}
$L\left(X^{k}, Y\right)$	$\left\{k-1\right.$ inear bounded operators $\left.L: X \rightarrow L\left(X^{k-1}, Y\right)\right\}$
\wedge	field R or C
λ, μ, \ldots	elements of Λ
0	unit for addition in a Banach-space, or multilinear operator $L \in L\left(X^{k}, Y\right)$ such that $L x_{1} \ldots x_{k}=0 \quad \forall\left(x_{1}, \ldots, x_{k}\right) \in X^{k}$
I	unit for multiplication in a Banach-algebra
1	unit for multiplication in \wedge
F, G, \ldots	non-linear operators : $X \rightarrow Y$
$B\left(x_{0}, r\right)$	open ball with centre $x_{0} \in X$ and radius $r>0$
$\bar{B}\left(x_{0}, r\right)$	closed ball with centre $x_{0} \in X$ and radius $r>0$
P, Q, R, S, T, \ldots	non-linear operators : $X \rightarrow Y$, usually abstract polynomials
aP, $\partial Q, \ldots$	exact degree of the abstract polynomial P, Q, \ldots
$F^{(k)}\left(x_{0}\right)$	$k^{\text {th }}$ Fréchet-derivative of the operator $F: X \rightarrow Y$ in X_{0}
D(G)	$\{x \in X \mid G(x)$ is regular in $Y\}$ for the operator $G: X \rightarrow Y$ (=Banach-algebra)
$A_{i}, B_{j}, C_{k}, D_{s}$	i-linear, j-1inear, k-linear, s-linear operators

1. INTRODUCTION

A lot of attempts have been made to generalize in some way classical Padea-approximants. We refer e.g. to quadratic Padé-approximants ($X, X V$), Chebyshev-Padé or

Legendre-Padé (VII), operator Padé-approximants for formal power series in a parameter with non-commuting elements of a certain algebra as coefficients (VI), Nvariable rational approximants (VIII, IX, XI, XII, XIII, XIV).

Another genralisation now is the following one.
Let X and Y be Banach-spaces (same field Λ). We always work in the norm-topology. We define $L\left(X^{k}, Y\right)=\left\{L \mid L\right.$ is a $k-1$ inear bounded operator, $\left.L: X \rightarrow L\left(X^{k-1}, Y\right)\right\}$ and $L\left(X^{0}, Y\right)=Y$. So $L x_{1} \ldots x_{k}=\left(L x_{1}\right)\left(x_{2} \ldots x_{k}\right) \in Y$ with $x_{1}, \ldots, x_{k} \in X$ and $L x_{1} \in L\left(X^{k-1}, Y\right)$ (V pp. 100). $L \in L\left(X^{k}, Y\right.$) is called symmetric if $L x_{1} \ldots x_{k}=L x_{i_{1}} \ldots x_{i_{k}}, \forall\left(x_{1}, \ldots, x_{k}\right) \in X^{k}$ and \forall permutations (i_{1}, \ldots, i_{k}) of ($1, \ldots, k$) ($V \mathrm{pp} .103$).
We remark that the operator $\bar{L} \in L\left(X^{k}, Y\right)$ defined by $\left[x_{1} \ldots x_{k}=\frac{1}{k!}\left(i_{1}, \ldots, i_{k}\right) L x_{i_{1}} \ldots x_{i_{k}}\right.$ for a given $L \in L\left(X^{k}, Y\right)$ is symmetric.

Let us identify $y \in Y$ with the constant operator $X \rightarrow Y: X \rightarrow y$ and call it o-linear.
Definition 1.1. : An abstract polynomial is a non-linear operator $P: X \rightarrow Y$ such that $P(x)=A_{n} x^{n}+\ldots+A_{0} \in Y$ with $\left\{\begin{array}{l}A_{i} \in L\left(X^{i}, Y\right) \\ A_{i} \text { symmetric }\end{array}\right.$
The degree of $P(x)$ is n.
The notation for the exact degree of $P(x)$ is ∂P.

Definition 1.2. : Let X be a Banach-space, Y a Banach-algebra; let $F: X \rightarrow Y$ and $G: X \rightarrow Y$ be operators.

The product $F . G$ is defined by : $(F \cdot G)(x)=F(x) \cdot G(x)$ in Y.

Definition 1.3. : Let $X_{1}, \ldots, X_{p}, Z_{1}, \ldots, Z_{q}$ be vector spaces and Y an algebra (same field Λ). Let $F: X_{1} \times \ldots x X_{p} \rightarrow Y$ be bounded and p-linear, and $G: Z_{1} x \ldots x Z_{q} \rightarrow Y$ be bounded and $q-1$ inear. The tensorproduct $F \otimes G: X_{1} \times \ldots \times X_{p} \times Z_{1} \times \ldots x Z_{q} \rightarrow Y$ is bounded and $(p+q)$ linear when defined by $(F \otimes G) x_{1} \ldots x_{p} z_{1} \ldots z_{q}=F x_{1} \ldots x_{p} \cdot G z_{1} \cdots z_{q}$ (IIpp.318).

One can easily prove that in a Banach-algebra Y :

$$
(F . G)^{\prime}\left(x_{0}\right)=F^{\prime}\left(x_{0}\right) \otimes G\left(x_{0}\right)+F\left(x_{0}\right) \otimes G^{\prime}\left(x_{0}\right),
$$

where the accent stands for Fréchet-differentiation. We call $y \in Y$ regular if there exists $y^{-1} \in Y$ such that $: y \cdot y^{-1}=I=y^{-1} \cdot y$; we call $y \in Y$ singular if it is not regular.

Definition 1.4. : Let $G: X \rightarrow Y$ with X a Banach-space and Y a Banach-algebra;
$D(G)=\{x \in X \mid G(x)$ is regular in $Y\}$ is an open set in X (III pp.31). The operator $\frac{1}{G}$ is defined by $\frac{1}{G}: D(G) \subset X \rightarrow Y: X \rightarrow[G(x)]^{-1}$.
One can easily prove that in a commutative Banach-algebra Y :

$$
\left(\frac{1}{G}\right)^{\prime}\left(x_{0}\right)=-G^{\prime}\left(x_{0}\right) \otimes\left(\frac{1}{G}\left(x_{0}\right)\right)^{2} .
$$

Let again X and Y both be Banach-spaces.
We note the fact that $F^{(k)}\left(x_{0}\right)$, the $k^{\text {th }}$ derivative of an operator $F: X \rightarrow Y$ in x_{0}, is a symmetric k-linear operator (V pp. 110).

Abstract polynomials are differentiated as in elementary calculus :
if $P(x)=A_{n} x^{n}+\ldots+A_{0}$ with $A_{i} \in L\left(X^{i}, Y\right)$ and A_{i} symmetric, then
$P^{\prime}\left(x_{0}\right)=n \cdot A_{n} x_{0}^{n-1}+\ldots+A_{1} \in L(X, Y)$
$p^{(2)}\left(x_{0}\right)=n \cdot(n-1) \cdot A_{n} x_{0}^{n-2}+\ldots+2 A_{2} \in L\left(X^{2}, Y\right)$
!
$p^{(n)}\left(x_{0}\right)=n . A_{n} \in L\left(X^{n}, Y\right)$
We now can easily prove the fact that if for an abstract polynomial
$P(x)=\sum_{i=0}^{n} C_{i} x^{i}$ with $C_{i} \in L\left(X^{i}, Y\right)$ and C_{i} symmetric: $P(x)=0 \quad \forall x \in X$, then $C_{i} \equiv 0$ $\forall i \in\{0, \ldots, n\}$.
Let $B\left(x_{0}, r\right)=\left\{x \in X\left\|x_{0}-x\right\|<r\right\}$ for $r \in R_{0}^{+}$and $x_{0} \in X$.

Definition 1.5. : The operator $F: X \rightarrow Y$ possesses an abstract Taylor-series in x_{0} if

$$
\begin{aligned}
& \exists B\left(x_{0}, r\right) \text { with } r>0: \\
& F\left(x_{0}+h\right)=\sum_{k=0}^{\infty} \frac{1}{k!} \cdot F^{(k)}\left(x_{0}\right) h^{k} \text { for } x_{0}+h \in B\left(x_{0}, r\right) .
\end{aligned}
$$

We then call F abstract analytic in $x_{0}(V$ pp. 113).

2. DEFINITION OF ABSTRACT PADE-APPROXIMANT

To generalize the notion of Padé-approximant we start from analyticity, as in elementary calculus.

Let $F: X \rightarrow Y$ be a non-linear operator, X a Banach-space and Y a Banach-algebra. Let F be analytic in $B\left(x_{0}, r\right)$ with $r>0$.
So F has the following abstract Taylor-series :

$$
\begin{align*}
& F\left(x_{0}+x\right)=\sum_{k=0}^{\infty} \frac{1}{k!} F^{(k)}\left(x_{0}\right) x^{k} \tag{1}\\
& \text { with } \frac{1}{0!} F^{(0)}\left(x_{0}\right) x^{0}=F\left(x_{0}\right) \\
& \text { and } F^{(k)}\left(x_{0}\right) \in L\left(x^{k}, Y\right)
\end{align*}
$$

We give some examples of such series :
a) $C([0,1])$ with the supremum-norm and $(f . g)(x)=f(x) \cdot g(x)$ for $f, g \in C([0,1])$, is a commutative Banach-algebra. Consider the Nemyckii-operator $G: C([0,1]) \rightarrow$ $C([0,1]): x \rightarrow g(s, x(s))$ with $g \in C^{(\infty)}([0,1] \times C([0,1])) \quad$ (V pp. 95). Let $I_{x}: C([0,1]) \rightarrow C([0,1]): x \rightarrow x$.
Then clearly $G^{(n)}\left(x_{0}\right)=\frac{\partial^{n} g}{\partial x^{n}}\left(s, x_{0}(s)\right) \cdot \underbrace{I_{x}^{\otimes} \ldots \otimes I_{x}}_{n \text { times }}, n-1$ inear and bounded.
b) Consider the Urysohn integral operator $U: C([0,1]) \rightarrow C([0,1])$:
$x \rightarrow \int_{0}^{1} f(s, t, x(t)) d t$ with $f \in C^{(\infty)}([0,1] \times[0,1] \times C([0,1])) \quad(V \mathrm{pp} .97)$.
Let[] indicate a place-holder for $x(t) \in C([0,1]) \quad(V$ pp. 90).
Then we write $U^{(n)}\left(x_{0}\right)=\int_{0}^{1} \frac{\partial^{n} f}{\partial x^{n}}\left(s, t, x_{0}(t)\right) \underbrace{[1 \ldots[]}_{n \text { times }} d t$
c) Consider the operator $P: C^{\prime}([0, T]) \rightarrow C([0, T]): y \rightarrow \frac{d y}{d t}-f(t, y)$ in the initial value problem $P(y)=0$ with $y(0)=a \in R$.
Let $f \in C^{(\infty)}\left([0, T] \times C^{\prime}([0, T])\right)$ and $I_{y}: C^{\prime}([0, T]) \rightarrow C([0, T]): y \rightarrow y$.
We remark that $C^{(i)}([0, T])$ with the supremum-norm is a Banach space.
We see that $P^{\prime}\left(y_{0}\right)=\frac{d}{d t}-\frac{\partial f(t, y)}{\partial y}\left(t, y_{0}\right) . I_{y}$ and
$p^{(n)}\left(y_{0}\right)=\frac{-\partial^{n} f(t, y)}{\partial y^{n}}\left(t, y_{0}\right) \cdot \underbrace{I_{y}^{y} \otimes I_{y}}_{n \text { times }}$ for $n \geqslant 2$.
d) Finally let this nonlinear system of 2 real variables $F\binom{\xi}{\eta}=\binom{\xi+\sin (\xi \eta)+1}{\xi^{2}+\eta^{2}-4 \xi \eta}$ be given; let $x_{0}=\binom{0}{0} . \mathbb{R}^{2}$ with component-wise multiplication is a Banach-algebra with unit $\binom{1}{1}$.
Then $F(x)=\binom{1}{0}+\binom{\xi}{0}+\binom{\xi \eta \eta}{\xi^{2}+\eta^{2}-4 \xi \eta}+\sum_{k=1}^{\infty}\binom{(-1)^{k} \cdot \frac{(\xi \eta)^{2 k+1}}{(2 k+1)!}}{0}$.

Definition 2.1. : Let $F: X \rightarrow Y$ be an operator with X and Y Banach-spaces.

$$
\begin{aligned}
& \text { We say that } F(x)=0\left(x^{j}\right) \text { if } \exists J \in R_{0}^{+} \\
& \exists B(0, r) \text { with } 0<r<1: \forall x \in B(0, r):\|F(x)\| \leqslant J .\|x\|^{j}(j \in N)
\end{aligned}
$$

Now let $x_{0}=0$ without loss of generality, and let Y be a commutative Banach-algebra.
In Y we can use the fact that for $y, z \in Y: y . z$ regular $\Rightarrow y$ regular and z regular.

Definition 2.2. : In Padê-approximation we try to find a couple of abstract poly-
nomials $(P(x), Q(x))=\left(A_{n \cdot m+n} x^{n \cdot m+n}+\ldots+A_{n \cdot m} x^{n \cdot m}\right.$,
$\left.B_{n \cdot m+m} x^{n \cdot m+m}+\ldots+B_{n \cdot m} x^{n \cdot m}\right)$
such that the abstract power series

$$
\begin{aligned}
& F(x) \cdot\left(B_{n \cdot m+m} x^{n \cdot m+m}+\ldots+B_{n \cdot m} x^{n \cdot m}\right)-\left(A_{n \cdot m+n} x^{n \cdot m+n}+\ldots+A_{n \cdot m} x^{n \cdot m}\right)= \\
& 0\left(x^{n \cdot m+n+m+1}\right)
\end{aligned}
$$

(In 5.f) we justify the choice of $(P(x), Q(x))$ made here).

Write $\frac{1}{k!} \cdot F^{(k)}(0)=C_{k} \in L\left(X^{k}, Y\right)$.
The condition in definition 2.2 is equivalent with (1a) and (1b) :
(la) $\left(C_{0} \cdot B_{n \cdot m} x^{n \cdot m}=A_{n \cdot m} x^{n \cdot m} \forall x \in X\right.$

$$
\begin{aligned}
& C_{1} x \cdot B_{n \cdot m} x^{n \cdot m}+C_{0} \cdot B_{n \cdot m+1} x^{n \cdot m+1}=A_{n \cdot m+1} x^{n \cdot m+1} \quad \forall x \in x \\
& \vdots \\
& C_{n} x^{n} \cdot B_{n \cdot m} x^{n \cdot m}+C_{n-1} x^{n-1} \cdot B_{n \cdot m+1} x^{n \cdot m+1}+\ldots+C_{0} \cdot B_{n \cdot m+n} x^{n \cdot m+n}= \\
& \quad A_{n \cdot m+n} x^{n \cdot m+n} \quad \forall x \in x
\end{aligned}
$$

with $B_{j} \equiv 0 \in L\left(X^{j}, y\right)$ if $j>n . m+m$
(1b) $\left\{\begin{array}{l}c_{n+1} x^{n+1} \cdot B_{n \cdot m} x^{n \cdot m}+\ldots+c_{n+1-m} x^{n+1-m} \cdot B_{n \cdot m+m} x^{n \cdot m+m}=0 \quad \forall x \in x \\ \vdots \\ c_{n+m} x^{n+m} \cdot B_{n \cdot m} x^{n \cdot m}+\ldots+c_{n} x^{n} \cdot B_{n \cdot m+m} x^{n \cdot m+m}=0 \quad \forall x \in x\end{array}\right.$

$$
\text { with } C_{k} \equiv 0 \in L\left(X^{k}, Y\right) \text { if } k<0
$$

For every solution $\left\{B_{n, m+j} x^{n \cdot m+j} \mid j=0, \ldots, m\right\}$ of (1b), a solution $\left\{A_{n, m+i} x^{n \cdot m+i} \mid i=0, \ldots, n\right\}$ of (1a) can be computed.

3. EXISTENCE OF A SOLUTION

a) case : $m=0$

Choose $B_{n . m}=B_{0}=I$, unit for the multiplication in γ.
Then $A_{i}=C_{i}$ for $i=0, \ldots, n$ are a solution of (la).
The partial sums of (1) are the sought abstract polynomials.
b) case: $m \neq 0$

Compute $D_{n, m}=\sum_{i_{1}=1}^{m} \ldots \sum_{i_{m}=1}^{m}\left[\varepsilon_{i_{1} \ldots i_{m}}{ }_{j=1}^{m} c_{n-(j-1)+\left(i_{j}-1\right)}\right]$
with $i_{1}, \ldots, i_{m} \in\{1, \ldots, m\}$, and $\varepsilon_{i_{1} \ldots i_{m}}=+1$ when $i_{1} \ldots i_{m}$ is an even permutation of $1 \ldots m$, and $\varepsilon_{i_{1} \ldots i_{m}}=-1$ when $i_{1} \ldots i_{m}$ is an odd permutation of $1 \ldots m$, and $\varepsilon_{i_{1} \ldots i_{m}}=0$ elsewhere.

Compute for $h=1, \ldots, m: D_{n, m+h}$ by replacing in $D_{n . m}$ the operator $C_{n-(h-1)}+\left(i_{h}-1\right)$
by the operator $-C_{n+1+\left(i_{h}-1\right)}$.
Clearly $D_{n, m+h} \in L\left(X^{n . m+h}, Y\right)$ for $h=0, \ldots, m$.
Now $D_{n, m+h} x^{n \cdot m+h}$ is a solution of system (1b); and $D_{n, m+h} x^{n \cdot m+h}=\bar{D}_{n \cdot m+h} x^{n \cdot m+h}$. We thus can consider a symmetric solution, also for (la).

This is a correct procedure to calculate a solution. But in some cases it can be more practical to solve the system otherwise, e.g. to get the most general form of the solution.

4. UNICITY OF A SOLUTION

From now on $F: X \rightarrow Y$ is a nonlinear operator with X a Banach-space and Y a commutative Banach-algebra such that for each polynomial $T: X \rightarrow Y$ with $D(T) \neq \phi$, the set $D(T)$ is dense in X (or any other equivalent condition).
 X with the norm-topology. We then have the following important lemma.

Lemma 4.1. :

$$
\left.\begin{array}{l}
\text { Let } U, T \text { be abstract polynomials }: X \rightarrow Y \\
U(x) \cdot T(x)=0 \quad \forall x \in X \\
\{x \in X \mid T(x) \text { regular }\} \text { is dense in } X
\end{array}\right\} \Rightarrow U \equiv 0
$$

After calculating the solution of (la) and (lb) we are going to look for an irreducible rational approximant.

Definition 4.1. : Let P and Q be 2 abstract polynomials. We call $\frac{1}{Q}$. P reducible if there exist abstract polynomials T, R, S such that $P=T . R=R . T$ and $Q=T . S=S . T$ and $\partial T \geqslant 1, \partial R \geqslant 0, \partial S \geqslant 0$.

For reducible $\frac{1}{Q}$. P we know that $\forall x \in D(Q):\left(\frac{1}{Q} \cdot P\right)(x)=\left(\frac{1}{S} \cdot R\right)(x)$. It is possible that $\frac{1}{S}$ is defined on a greater domain than $\frac{1}{Q}$.

Lemma 4.2. :

$$
\begin{aligned}
& \text { Let } P, Q, R \text { be abstract polynomials : } X \rightarrow Y \\
& \text { For } R=P \cdot Q:\left\{\begin{array}{l}
D(R)=D(P) \cap D(Q) \\
D(R)=\phi \Leftrightarrow D(P)=\phi \text { or } D(Q)=\phi
\end{array}\right.
\end{aligned}
$$

Proof : $R(x)$ regular $\Leftrightarrow P(x)$ regular and $Q(x)$ regular so $D(R)=D(P) \cap D(Q)$ We know that $D(P)$ is open (and so is $D(Q)$)

$$
D(Q) \text { is dense in } X \text { if } D(Q) \neq \phi \text { (and so is } D(P) \text {) }
$$

If $D(P)=\phi$ or $D(Q)=\phi$ then evidently $D(R)=\phi$.
The second implication is proved by contraposition.
If $D(R)=\phi$ and $\exists x \in D(P)$ then $\exists r_{0}>0: B\left(x, r_{0}\right) \subset D(P)$.
Now $\forall x \in X, \forall \quad r>0: B(x, r) \cap D(Q) \neq \phi$.
And so $\phi \neq B\left(x, r_{0}\right) \cap D(Q) \subseteq D(P) \cap D(Q)$.
This implies a contradiction.

Definition 4.2. : Let (P, Q) be a couple of abstract polynomials satisfying definition 2.2 and suppose $D(Q) \neq \phi$ or $D(P) \neq \phi$. Possibly $\frac{1}{Q} . P$ is reducible. Let $\frac{1}{Q_{\star}} \cdot P_{\star}$ be the irreducible form of $\frac{1}{Q} \cdot P$ such that $0 \in D\left(Q_{\star}\right)$ and and $\overline{Q_{\star}(0)}=I$, if it exists. We then call $\frac{1}{Q_{\star}} \cdot P_{\star}$ an abstract Padéapproximant of order (n, m) for F.

That irreducible form $\frac{1}{Q_{\star}} \cdot P_{\star}$ with $Q_{\star}(0)=I$ is unique because if $P=P_{\star 1} \cdot T_{1}=P_{\star 2} \cdot T_{2}$
and $Q=Q_{\star 1} \cdot T_{1}=Q_{\star 2} \cdot T_{2}$ with $\frac{1}{Q_{\star 1}} \cdot P_{\star 1}$ and $\frac{1}{Q_{\star 2}} \cdot P_{\star 2}$ irreducible, $Q_{\star 1}(0)=I=Q_{\star 2}(0)$, $D\left(T_{1}\right) \neq \phi$ and $D\left(T_{2}\right) \neq \phi$, then $P_{\star 1} \cdot Q_{\star 2}=P_{\star 2} \cdot Q_{\star 1}$ because of lemma 4.1 and so we can prove that ヨpolynomial $R>\left\{\begin{array}{l}P_{\star 1}=R \cdot P_{\star 2}, \text { what contradicts the irreducible character } \\ Q_{\star 1}=R \cdot Q_{\star 2} \\ R(0)=I\end{array}\right.$ of $\frac{1}{Q_{\star_{1}}} \cdot P_{\star_{1}}$ uniess $\partial R=0$.

Call n^{\prime} the exact degree of P_{\star} and m^{\prime} the exact degree of Q_{\star}. When $\left(P(x)=P_{\star}(x) \cdot T(x), Q(x)=Q_{\star}(x) \cdot T(x)\right.$) is a solution of (1a) and (1b) and $\frac{1}{Q_{\star}} \cdot P_{\star}$ is an abstract Padé-approximant of order (n, m) for F, then $\partial T \geqslant n . m$ and $n^{\prime} \leqslant n$ and $m^{\prime} \leqslant m$.

We have the following theorem concerning the solutions of (1a) and (1b).

Theorem 4.1 :

> If the couples (P, Q) and (R, S) of abstract polynomials both satisfy $(1 a)$ and (1 b), then $P \cdot S=R . Q$; in other words : $\forall x \in X: P(x) \cdot S(x)=R(x) \cdot Q(x)$.

Proof : Regard $P(x) \cdot S(x)-R(x) \cdot Q(x)=$

$$
[F(x) \cdot S(x)-R(x)] \cdot Q(x)-[F(x) \cdot Q(x)-P(x)] \cdot S(x)
$$

Now $(F \cdot Q-P)(x)=0\left(x^{n \cdot m+n+m+1}\right)$ $(F . S-R)(x)=0\left(x^{n \cdot m+n+m+1}\right)$

But (P.S-R. $Q)(x)$ is an abstract polynomial of degree at most $2 n . m+n+m$, while $[(F \cdot S-R) \cdot Q-(F \cdot Q-P) \cdot S](x)=0\left(x^{2 n \cdot m+n+m+1}\right)$

So (P.S-R.Q) $(x)=0 \quad \forall x \in X$.

This theorem implies that $\left(\frac{1}{Q} \cdot P\right)(x)=\left(\frac{1}{S} \cdot R\right)(x) \quad \forall x \in D(Q) \cap D(S)$.
If $D(Q . S) \neq \varnothing$ then $D(Q . S)$ is dense in X.
Possibly $\frac{1}{Q} \cdot P$ and $\frac{1}{S} \cdot R$ are reducible. If $P=P_{\star} \cdot T, Q=Q_{\star} \cdot T, R=R_{\star} \cdot U, S=S_{\star} \cdot U$ with
$D(T) \neq \phi$ and $D(U) \neq \phi$, then :

$$
P \cdot S=R \cdot Q \Rightarrow P_{\star} \cdot S_{\star}=R_{\star} \cdot Q_{\star} \text { because of lemma } 4.1 .
$$

We then know that $\left(\frac{1}{Q_{\star}} \cdot P_{\star}\right)(x)=\left(\frac{1}{S_{\star}} \cdot R_{\star}\right)(x) \quad V x \in D\left(Q_{\star}\right) \cap D\left(S_{\star}\right) ;$ if $D\left(Q_{\star}, S_{\star}\right) \neq \phi$ then $D\left(Q_{\star} \cdot S_{\star}\right)$ is dense in X.

We can define an equivalence relation ... ~... in
$A=\{(P, Q) \mid(P, Q)$ satisfies definition 2.2 and $(D(P) \neq \phi$ or $D(Q) \neq \phi)\} \cup$

$$
\left\{\left(P_{\star}, Q_{\star}\right) \mid\left(P=P_{\star} \cdot T, Q=Q_{\star} \cdot T\right) \text { satisfies definition } 2.2 \text { and }(D(P) \neq \phi \text { or } D(Q) \neq \phi)\right.
$$

and $\frac{1}{Q_{\star}} \cdot P_{\star}$ is irreducible\} where $P_{\star}, Q_{\star}, T, P, Q$ are abstract polynomials, by

$$
(P, Q) \sim(R, S) \leftrightarrow P(x) \cdot S(x)=R(x) \cdot Q(x) \quad \forall x \in X
$$

If there exists a solution $(P, Q) \in A$ such that $Q_{(}(0)=I$, then for all equivalent
solutions $(R, S) \in A: 0 \in D\left(S_{\star}\right)$ because $P_{\star} S_{\star}=R_{\star} Q_{\star}$ implies : \exists polynomial $V \supset_{\star}=V P_{\star}, ~\left\{\begin{array}{l}R_{\star}=V Q_{\star} \\ V(0)=S(0)\end{array}\right.$
what contradicts the irreducible character of $\frac{1}{S_{\star}} \cdot R_{\star}$ unless $\partial V=0$ and so $\left\{\begin{array}{l}R_{\star}=S(0) \cdot P_{\star} \text {; } \\ S_{\star}=S(0) \cdot Q_{\star}\end{array}\right.$
if now $S(0)$ were not regular then (R, S) were no element of A.
If $S_{\star}(0)=I=Q_{\star}(0)$ then $P_{\star} \cdot S_{\star}=R_{\star} \cdot Q_{\star}$ implies that \exists polynomial $V=-\left\{\begin{array}{l}P_{\star}=V . R_{\star} \\ Q_{\star}=V . S_{\star} \\ V(0)=I\end{array}\right.$
In other words : for $\frac{1}{S_{\star}} \cdot R_{\star}$ irreducible we have $\partial V=0$ and so $\frac{1}{Q} \cdot P$ and $\frac{1}{S} \cdot R$ supply the same abstract Padē-approximant of order (n, m) for F when (P, Q) and (R, S) both satisfy (la) and (1b).
We $\operatorname{call} \frac{1}{Q_{\star}} \cdot P_{\star}$ satisfying definition 4.2 the abstract Padē-approximant (APA) of order (n, m) for F.

Definition 4.3. : If for all the solutions (P, Q) of (1a) and (1b) with $D(P) \neq \phi$ or $D(Q) \neq \phi$ the irreducible form $\frac{1}{Q_{\star}} \cdot P_{\star}$ (representant of the equivalence relation-class) is such that $D\left(Q_{\star}\right) \neq 0$, then we call $\frac{1}{Q_{\star}} \cdot P_{\star}$ the abstract rational approximant (ARA) of order (n, m) for F.
(We do come back on abstract rational approximants in 5.f).
We remark that, although $F(0)=C_{0}$ is defined, $\left(\frac{1}{Q}, P\right)(0)=\frac{0}{0}$ is always undefined for (P, Q) satisfying definition 2.2 with $n>0$ and $m>0$, since O is always singular in Y. If for all the solutions (P, Q) of (la) and (1 b) : O $\neq D\left(Q_{\star}\right)$ or $D(Q)=\phi=D(P)$, we shall call the abstract Pade-approximant undefined.
If for the ARA $D\left(Q_{\star}\right)=\phi$ then for all solutions (R, S) of (la) and (lb): $D\left(S_{\star}\right)=\phi$ because $D\left(P_{\star}\right) \cap D\left(S_{\star}\right)=D\left(R_{\star}\right) \cap D\left(Q_{\star}\right)=\phi$ and $D(P) \neq \phi$; the ARA is in fact useless then. An example will prove that it is very well possible that for an operator $F: X \rightarrow Y$, the (n, m) Pade-approximant is defined, while the ($1, k$) Padé-approximant is undefined for $l \neq n$ or $k \neq m$.
Consider the operator $F\binom{\xi}{\eta}=\binom{\xi+\sin (\xi n)+1}{\xi^{2}+\eta^{2}-4 \xi \eta}=\binom{1}{0}+\binom{\xi}{0}+\binom{\xi \eta}{\xi^{2}+\eta^{2}-4 \xi \eta}+\ldots$
Then: (1,1$)-$ APA is $\binom{\frac{1+\xi-\eta}{1-\eta}}{0}, P_{\star}(x)=P_{\star}\binom{\xi}{\eta}=\binom{1}{0}+\left(\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right)\binom{\xi}{\eta}$

$$
\begin{aligned}
& Q_{\star}(x)=Q_{\star}\binom{\xi}{\eta}=\binom{1}{1}+\left(\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right)\binom{\xi}{\eta} \\
& D\left(Q_{\star}\right)=R^{2} \backslash\{(\xi, 1) \mid \xi \in R\}
\end{aligned}
$$

$(2,1)-A P A$ is $\binom{1+\xi+\xi \eta}{\xi^{2}+\eta^{2}-4 \xi \eta} P_{\star}(x)=C_{0}+C_{1} x+C_{2} x^{2}$

$$
Q_{\star}(x)=I
$$

$$
D\left(Q_{\star}\right)=R^{2}
$$

(1,2)-APA is undefined.
The next theorem is a summary of the previous results.

Theorem 4.2. :
For every non-negative value of n and m, the systems (la) and (1b) are solvable; if the abstract Padē-approximant of order (n, m) for $F: X \rightarrow Y$ is defined, it is unique.
For the $(n, m)-A P A \frac{1}{Q_{\star}} . P_{\star}$ we know that P_{\star} and Q_{\star} are abstract polynomials, respectively of degree at most n and at most m.

Proof : Evident.

From now on, when mentioning abstract Padé-approximants, we consider only the abstract Pade-approximants that are not undefined. Let (P, Q) be a solution of (1a) and (1b). Because of definition 4.2 it is very well possible that (P_{\star}, Q_{\star}) itself does not satisfy definition 2.2.

Theorem 4.3. :

```
Let \(\frac{1}{Q_{\star}} \cdot P_{\star}\) be the abstract Pade-approximant of order \((n, m)\) for \(F\).
Then \(\exists s: 0 \leqslant s \leqslant m i n\left(n-n^{\prime}, m-m^{\prime}\right), \exists\) an abstract polynomial
\(T(x)=\sum_{k=n, m}^{n \cdot m+s} T_{k} x^{k}, T_{n \cdot m+s} \neq 0, \quad D(T) \neq \phi \nu\left(P_{\star} \cdot T, Q_{\star} \cdot T\right)\) satisfies
definition \(2.2 ; \partial\left(P_{\star} . T\right)=n . m+n^{\prime}+s\) and \(\partial\left(Q_{\star} . T\right)=n . m+m^{\prime}+s\).
If then \(T(x)=T_{n \cdot m+r} x^{n \cdot m+r}+T_{n \cdot m+r+1} x^{n \cdot m+r+1}+\ldots+T_{n \cdot m+s} x^{n \cdot m+s}\)
with \(D\left(T_{n, m+r}\right) \neq \phi\), also \(\left(P_{\star} \cdot T_{n, m+r}, Q_{\star} \cdot T_{n, m+r}\right)\) satisfies definition
2.2 and \(0 \leqslant r \leqslant s \leqslant \min \left(n-n^{\prime}, m-m^{\prime}\right)\).
```

Proof : Because of theorem 4.2 we may consider abstract polynomials P and Q that satisfy (1a) and (1b) and supply P_{\star} and Q_{\star}. Because of definition 4.2, there exists an abstract polynomial T such that : $P=P_{\star} \cdot T$ and $Q=Q_{\star} \cdot T$ and $\partial T \geqslant n . m$. Because of lemma $4.2 D(T) \neq \phi$ (otherwise $D(P)=\phi=D(Q)$). Let $n^{\prime}=\partial P_{\star}, m^{\prime}=\partial Q_{\star}, \quad P=\sum_{i=n \cdot m}^{n \cdot m+n} A_{i} x^{j}, \quad Q=\sum_{j=n, m}^{n \cdot m+m} B_{j} x^{j}$.

Consequently $T(x)=\sum_{k=n \cdot m}^{n \cdot m+s} T_{k} x^{k}$ with $\left\{\begin{array}{l}\partial T=n \cdot m+s \\ n \cdot m+n^{\prime}+s \leqslant n \cdot m+n \\ n \cdot m+m^{\prime 2}+s \leqslant n \cdot m+m \\ s \geqslant 0\end{array}\right.$
and so $0 \leqslant s \leqslant \min \left(n-n^{\prime}, m-m^{\prime}\right)$.
$F(x) \cdot Q(x)-P(x)=T(x) \cdot\left[F(x) \cdot Q_{\star}(x)-P_{\star}(x)\right]=0\left(x^{n \cdot m+n+m+1}\right)$
Because $T(x)=T_{n, m+r} x^{n \cdot m+r}+\ldots$ with $T_{n \cdot m+r} \in L\left(x^{n \cdot m+r}, Y\right), D\left(T_{n, m+r}\right) \neq \phi$, we have that $T_{n \cdot m+r} x^{n \cdot m+r} \cdot\left[F(x) \cdot Q_{\star}(x)-P_{\star}(x)\right]=O\left(x^{n \cdot m+n+m+1}\right)$.

5. REMARKS AND SPECIAL CASES

a) When $X=R=Y(\Lambda=R)$, then the definition of abstract Padé-approximant is precisely the classical definition. F is now a real-valued function f of 1 real variable, with a Taylor-series development $\sum_{k=0}^{\infty} c_{k} \cdot x^{k}$ with $c_{k}=\frac{1}{k!} f^{(k)}(0)$.
The k-linear operators $C_{k} \in L\left(X^{k}, Y\right)$ are :

$$
c_{k} x^{k}=c_{k} \underbrace{x \ldots x}_{k} \in R \text { with } c_{k} \in R
$$

The j-linear functions $B_{j} x^{j}=b_{j \underset{j}{ } \underbrace{x}_{j} \ldots x} \in R, b_{j} \in R, j=n, m, \ldots, n, m+m$ and such that :

$$
\left\{\begin{array}{l}
c_{n+1} \cdot b_{n \cdot m}+\ldots+c_{n+1-m} \cdot b_{n \cdot m+m}=0 \\
\vdots \\
c_{n+m} \cdot b_{n \cdot m}+\ldots+c_{n} \cdot b_{n \cdot m+m}=0
\end{array}\right.
$$

are a solution of (1b).
The i-linear functions $A_{i} x^{i}=a_{i} \underbrace{x \ldots \ldots}_{i} \in R, a_{i} \in R, i=n . m, \ldots, n, m+n$ such that :

$$
\left\{\begin{array}{l}
c_{0} \cdot b_{n, m}=a_{n, m} \\
c_{1} \cdot b_{n, m}+c_{0} \cdot b_{n, m+1}=a_{n, m+1} \\
\vdots \\
c_{n} \cdot b_{n, m}+\ldots+c_{0} \cdot b_{n, m+n}=a_{n, m+n}
\end{array}\right.
$$

are a solution of (1a).
The irreducible form $\frac{1}{Q_{\star}} \cdot P_{\star}$ of $\left(\frac{1}{Q} \cdot P\right)(x)=\frac{1}{\left(\sum_{j=n, m}^{n \cdot m+m} b_{j} x^{j}\right)} \cdot\left(\sum_{i=n \cdot m}^{n \cdot m+n} a_{i} x^{i}\right)$, such
that $Q_{\star}(0)=1$, is the irreducible form $\frac{1}{Q_{\star}} \cdot P_{\star}$ of $\left(\sum_{i=0}^{n} a_{i+n, m} x^{i}\right) /\left(\sum_{j=0}^{m} b_{j+n, m} x^{j}\right)$, such that $Q_{\star}(0)=1$.
b) When we calculate the abstract Pade-approximant of order ($n, 0$) we find the $n^{\text {th }}$ partial sum of the abstract Taylor series. For if $B_{n, m}=I$ then $A_{i} x^{i}=C_{i} x^{i}, i=0, \ldots, n$ is a solution of system ($1 a$). This result has also been found in the classical theory.
c) To find equivalent formulations of the problem of Pade-approximating, we consider a couple of abstract polynomials (P, Q) satisfying definition 2.2. We then know that $(F \cdot Q-P)(x)=0\left(x^{n \cdot m+n+m+1}\right)$.

The systems (1a) and (1b) are completely equivalent with :

$$
(F, Q-P)^{(i)}(0) x^{i}=0 \quad \forall x \in X \quad \text { and } i=0, \ldots, n, m+n+m,
$$

because clearly (F.Q-P)(i) $(0) \equiv 0 \in L\left(X^{i}, Y\right)$ for $i=0, \ldots, n . m-1$ and $(F . Q-P)^{(i)}(0) x^{i}=0 \quad \forall x \in X, i=n . m, \ldots, n, m+n$ is system ($1 a$) and $(F, Q-P)^{(i)}(0) x^{i}=0$ $\forall x \in X, i=n \cdot m+n+1, \ldots, n . m+n+m$ is precisely system (1b).
d) If $X=R^{p}$ and $Y=R(\Lambda=R)$, then F is a real-valued function of p real variables. Now $L\left(X^{i}, Y\right)$ is isomorphic with $R^{p^{i}}$. Consequently for $(P(x), Q(x))$ satisfying
definition 2.2 the operator $\left(\frac{1}{Q} \cdot P\right)(x)$ has the following form :

$$
\frac{j_{1}+\ldots+j_{p}^{n \cdot m+n}=n . m{ }^{\alpha_{j}}{ }_{1} \ldots j_{p}{ }_{x_{1}}^{j_{1} \ldots x_{p}^{j_{p}}}}{j_{1}+\ldots+j_{p}=n . m+m}{ }^{\varepsilon_{j}} j_{1} \ldots j_{p} x_{1}^{x_{1} \ldots x_{p}^{j_{p}}}
$$

This form agrees with the form proposed by J. Karlsson and H. Wallin :

$$
\frac{j_{1}+\ldots+j_{p}=0}{\Sigma^{n}{ }^{\alpha_{j_{1}} \ldots j_{p}}{ }^{\Sigma^{m}}+\ldots+j_{p}=0^{j_{1}} \ldots x_{p}^{j_{p}}{ }_{1} \ldots j_{p} x_{1}^{j_{1}} \ldots x_{p}^{j_{p}}}
$$

if $n=0$ or $m=0$ (III).
Let $p=2$.
To calculate the abstract Pade-approximant we have to calculate the $(n \cdot m+1)+\ldots+(n . m+n+1)+(n . m+1)+\ldots+(n . m+m+1)$ real coefficients $\alpha_{j_{1}} \ldots j_{p}$ and
${ }^{\beta} j_{1} \ldots j_{p}$.
Now $(n \cdot m+1)+\ldots+(n \cdot m+n+1)+(n \cdot m+1)+\ldots+(n \cdot m+m+1)=n \cdot m \cdot(n+m+2)+\frac{(n+1)(n+2)}{2}+$ $+\frac{(m+1)(m+2)}{2}$.

The formulation in c) supplies us an amount of conditions on the derivatives of (F.Q-P) :
in all $\underset{\substack{n=n . m}}{n \cdot m+n+m}\left({ }_{i}^{p+i-1}\right)$ conditions.
For $p=2$ these are ($n \cdot m+1)+\ldots+(n . m+n+m+1)$ conditions.
If we use the extra condition of definition 4.2 , we have in all n.m. $(n+m+1)+$ $+\frac{(n+m+1)(n+m+2)}{2}+1$ conditions, just enough to calculate the $\alpha_{j_{1} j_{2}}$ and $\beta_{j_{1} j_{2}}$.

The extra condition is : 0 - linear term in $Q_{\star}(x)$ is I.
e) If $X=R^{P}$ and $Y=R^{q}(\Lambda=R)$, then F is a system of q reat-valued functions in p real variables.
Now $L(X, Y)$ is isomorphic with $R^{q \times p}$ and $L\left(X^{k}, Y\right)$ isomorphic with $R^{q \times p^{k}}$ while an element of $R^{q \times p^{k}}$ is represented by a row of p^{k-1} matrices (blocks), each containing q rows and p columns;
$L=\left(c_{i_{1} \ldots i_{k+1}}\right) \in L\left(X^{k}, Y\right) \Rightarrow \quad i_{1}$ is the row-index in the block
$i_{2} \ldots i_{k}$ is the number of the block (the most right index grows the fastest)
i_{k+1} is the column-index in the block.

So $L=\left(c_{i_{1} 1 \ldots 11 i_{k+1}}\left|c_{i_{1} 1 \ldots 12 i_{k+1}}\right| \ldots\left|c_{i_{1} 1 \ldots 1 p i_{k+1}}\right| c_{i_{1} 1 \ldots 121 i_{k+1}}|\ldots| c_{i_{1} p . . .} p i_{k+1}\right\rangle$
The abstract polynomials $(P(x), Q(x))$ satisfying definition 2.2 now have for each of the q components the form of the abstract polynomials of p real variables mentioned in d).
f) When we would try, in order to calculate the (n, m)-APA, to find a couple of abstract polynomials $\left(A_{n} x^{n}+\ldots+A_{0}, B_{m} x^{m}+\ldots+B_{0}\right)$ such that :

$$
\begin{equation*}
F(x) \cdot\left(B_{m} x^{m}+\ldots+B_{0}\right)-\left(A_{n} x^{n}+\ldots+A_{0}\right)=0\left(x^{n+m+1}\right) \tag{2}
\end{equation*}
$$

instead of $\left(A_{n \cdot m+n} x^{n \cdot m+n}+\ldots+A_{n \cdot m} x^{n \cdot m}, B_{n \cdot m+m} x^{n \cdot m+m}+\ldots+B_{n \cdot m} x^{n \cdot m}\right)$ such that:

$$
\begin{equation*}
F(x) \cdot\left(B_{n \cdot m+m} x^{n \cdot m+m}+\ldots+B_{n \cdot m} x^{n \cdot m}\right)-\left(A_{n \cdot m+n^{2}} x^{n \cdot m+n}+\ldots+A_{n \cdot m} x^{n \cdot m}\right)=0\left(x^{n \cdot m+n+m+1}\right) \tag{3}
\end{equation*}
$$

we would remark that this problem is not always solvable (except with $Q \equiv 0 \equiv P$). Consider again the example $F\binom{\xi}{\eta}=\binom{\xi+\sin (\xi \eta)+1}{\xi^{2}+\eta^{2}-4 \xi \eta}=\binom{1}{0}+\binom{\xi}{0}+\binom{\xi \eta}{\xi^{2}+\eta^{2}-4 \xi \eta}+\ldots$
and take $n=1$ and $m=2$.

while (3) is very well solvable, but the solution (P, Q) is such that the irreducible form of $\left(\frac{1}{0} . P\right)(x)$ is undefined in $\binom{0}{0}$.
So via (3) we find an abstract rational operator $\left(\frac{1}{Q} \cdot P\right)(x)=\binom{\frac{\xi-\eta+\xi-2 \xi \eta}{\xi-\eta-\xi \eta+\xi \eta^{2}}}{0}$ that \quad is useful in points in the vicinity of $\binom{0}{0}$. In other words : (2) does not provide us any solution at all (except $Q \equiv 0 \equiv P$)
(3) does provide an ARA but no APA.

What's more : the situation cannot occur where (2) supplies us the (n, m)-APA while (3) does nct, because for every solution (P, Q) of the systems resulting from (2) such that $Q_{\star}(0)=I$ and for every $L \in L\left(X^{n \cdot m}, Y\right):$

$$
\left\{\begin{array}{l}
(L, P, L, Q) \text { is a solution of (1a) and (1b) } \\
\frac{1}{Q_{\star}} \cdot P_{\star} \text { is the }(n, m)-A P A
\end{array}\right.
$$

And we have to look for an irreducible form anyhow.

6. COVARIANCE-PROPERTIES OF ABSTRACT PADE-APPROXIMANTS

The first property we are going to prove is the reciprocal covariance of abstract Padé-approximants.

Theorem 6.1. :
Suppose $F(0)$ is regular in Y and F is continuous in 0 and $\frac{1}{Q} \cdot P$ is the abstract Padé-approximant of order (n, m) for F, then $\frac{1}{P} \cdot Q$ is the abstract Padé-approximant of order (m, n) for $\frac{l}{F}$.

Proof : Since $\{y \in Y \mid y$ is regular $\}$ is an open set in Y, there exists $B\left(F(0), r_{2}\right)$ with $r_{2}>0$ such that $\forall y \in B\left(F(0), r_{2}\right): y$ is regular. Since F is continuous in 0 , there exists $B\left(0, r_{1}\right)$ with $r_{1}>0$ such that $\forall x \in B\left(0, r_{1}\right): F(x)$ is regular. So $\frac{1}{F}$ is defined in $B\left(0, r_{1}\right)$. We speak about $\frac{1}{Q} \cdot P$ and $\frac{1}{P} \cdot Q$ too only on the set of points on which those operators are defined. $P(0)=C_{0}=F(0)$ is regular $\Rightarrow \exists B(0, r): \forall x \in B(0, r): P(x)$ is regular. So $\frac{1}{p}$ exists in $B(0, r)$. Let $n^{\prime}=\partial P$ and $m^{\prime}=\partial Q$. $\exists s \in N, \quad 0 \leqslant s \leqslant m i n\left(n-n^{\prime}, m-m^{\prime}\right), \exists p o l y n o m i a l ~ T(x)=\sum_{k=n, m}^{n \cdot m+s} T_{k} x^{k}, D(T) \neq \phi \mathcal{D}$ $\left(P_{1}(x)=P(x) \cdot T(x), Q_{1}(x)=Q(x) \cdot T(x)\right)$ satisfies definition 2.2 for F. $[(F \cdot Q-P) \cdot T](x)=\left(F \cdot Q_{1}-P_{1}\right)(x)=0\left(x^{n \cdot m+n+m+1}\right)$
$\Rightarrow\left(\frac{1}{F} \cdot P_{1}-Q_{1}\right)(x)=0\left(x^{n \cdot m+n+m+1}\right)$ since $\frac{1}{F}(0)=C_{0}^{-1} \neq 0$ in the abstract Taylor series for $\frac{1}{F}$.
So $\exists s \in N, 0 \leqslant s \leqslant \min \left(n-n^{\prime}, m-m^{\prime}\right), \exists$ polynomial $T(x)=\sum_{k=n . m}^{n \cdot m+s} T_{k} x^{k}, D(T) \neq \phi \supset$ $\left(Q_{1}(x)=Q(x) \cdot T(x), P_{1}(x)=P(x) \cdot T(x)\right)$ satisfies definition 2.2 for $\frac{1}{F}$. The irreducible form of $\frac{1}{P_{1}} \cdot Q_{1}$ is $\frac{1}{P} \cdot Q \quad\left(D\left(P_{1}\right) \neq \phi\right.$ or $\left.D\left(Q_{1}\right) \neq \phi\right)$.
If we want the o-linear term in the denominator to be I, then $\frac{1}{\left(P(x) \cdot C_{0}^{-1}\right)} \cdot\left(Q(x) \cdot C_{0}^{-1}\right)$ is the abstract Padé-approximant of order (m, n) for $\frac{1}{F}$.

Theorem 6.2. :
Suppose $a, b, c, d \in Y, c . F(0)+d$ is regular in $Y, a . d-b . c$ is regular in $Y, \frac{1}{Q} . P$ is the $(n, n)-A P A$ for F and $D(c . P+d . Q) \neq \phi$ or $D(a \cdot P+b \cdot Q) \neq \phi$, then $\frac{1}{\left(c \cdot \frac{1}{Q} \cdot P+d\right)} \cdot\left(a \cdot \frac{1}{Q} \cdot P+b\right)$ is the $(n, n)-A P A$ for $\frac{1}{(c, F+d)} \cdot(a \cdot F+b)$.

Proof : $c \cdot F(0)+d$ is regular $\Rightarrow c \cdot\left(\frac{1}{Q} \cdot P\right)(0)+d$ is regular since $F(0)=\left(\frac{1}{Q} \cdot P\right)(0)$. So $\exists B(0, r)$: $\frac{1}{Q}$ is defined in $B(0, r)$

$$
\begin{aligned}
& \frac{1}{\left(c \cdot \frac{1}{Q} \cdot P+d\right)} \cdot\left(a \cdot \frac{1}{Q} \cdot P+b\right) \text { is defined in } B(0, r) \\
& \frac{1}{(c \cdot F+d)} \cdot(a \cdot F+b) \text { is defined in } B(0, r) \text {. }
\end{aligned}
$$

Let $n^{\prime}=\partial P$ and $n^{\prime \prime}=\partial Q$.
$\exists s \in N: 0 \leqslant s \leqslant \min \left(n-n^{\prime}, n-n^{\prime \prime}\right), \exists$ polynomial $T(x)=\sum_{k=n^{2}}^{n^{2}+s} T_{k} x^{k}, D(T) \neq \phi \partial$ $\left(P_{1}(x)=P(x) \cdot T(x), Q_{1}(x)=Q(x) \cdot T(x)\right)$ satisfies definition 2.2 for F. In other words: $[(F, Q-P) \cdot T](x)=\left(F \cdot Q_{1}-P{ }_{1}\right)(x)=0\left(x^{n^{2}+2 n+1}\right)$.

Now where $\frac{1}{\left(c \cdot \frac{1}{Q} \cdot P+d\right)} \cdot\left(a \cdot \frac{1}{Q} \cdot P+b\right)$ is defined:
$\frac{1}{\left(c \cdot \frac{1}{Q} \cdot P+d\right)} \cdot\left(a \cdot \frac{1}{Q} \cdot P+b\right)=\frac{1}{\frac{1}{Q} \cdot(c \cdot P+d \cdot Q)} \cdot(a \cdot P+b \cdot Q) \cdot \frac{1}{Q}=\frac{1}{c \cdot P+d \cdot Q} \cdot(a \cdot P+b \cdot Q)$.
Also $(c . P+d . Q)(0)=c . F(0)+d$ is regular in $B(0, r)$.
$\left\{\begin{array}{l}\partial(a, P+b, Q) \leqslant \max (\partial P, \partial Q) \text { and } \partial[(a, P+b, Q) \cdot T] \leqslant n^{2}+n \\ \partial(c \cdot P+d \cdot Q) \leqslant \max (\partial P, \partial Q) \text { and } \partial[(c \cdot P+d \cdot Q) \cdot T] \leqslant n^{2}+n\end{array}\right.$
Since $\left(F \cdot Q_{1}-P_{1}\right)(x)=0\left(x^{n^{2}+2 n+1}\right)$ and $c . F(0)+d$ is regular, $\left[(a \cdot d-b \cdot c) \cdot \frac{1}{c \cdot F+d} \cdot\left(F \cdot Q_{1}-P_{1}\right)\right](x)=0\left(x^{n^{2}+2 n+1}\right)$.

Now $\frac{1}{(c \cdot F+d)} \cdot(a \cdot F+b) \cdot(c \cdot P+d, Q) \cdot T-(a \cdot P+b \cdot Q) \cdot T=$ $\frac{1}{(c \cdot F+d)} \cdot T \cdot(F \cdot Q-P) \cdot(a \cdot d-b \cdot c)=(a \cdot d-b \cdot c) \cdot \frac{1}{c \cdot F+d} \cdot\left(F \cdot Q_{1}-P_{1}\right)$ and $\left[(a \cdot d-b \cdot c) \frac{1}{c \cdot F+d} \cdot\left(F \cdot Q_{1}-P_{1}\right)\right](x)=0\left(x^{n^{2}+2 n+1}\right)$. We now search the irreducible form of $\frac{1}{(c \cdot P+d . Q) \cdot T} \cdot(a \cdot P+b, Q) \cdot T$. It is $\frac{1}{c . P+d . Q} \cdot(a . P+b . Q)$, for if $\frac{1}{c . P+d . Q} \cdot(a . P+b . Q)$ were reducible : $\begin{cases}\text { a.P+b.Q }=U . V & \text { with } U, V, W \text { abstract polynomials } \\ \text { c. } P+d \cdot Q=U . W & \text { and } \partial U \geqslant 1\end{cases}$ then: $\left\{\begin{array}{l}(a \cdot d-b \cdot c) \cdot P=d \cdot U \cdot V-b \cdot U \cdot W \\ (a \cdot d-b \cdot c) \cdot Q=a \cdot U \cdot W-c \cdot U \cdot V\end{array}\right.$
and so $\frac{1}{Q}$. P were reducibie. If we want the o-linear term in the denominator to be I,

$$
\begin{aligned}
& \frac{1}{(c \cdot P+d \cdot Q) \cdot e} \cdot(a \cdot P+b \cdot Q) \cdot e, \text { with } e=(c \cdot P(0)+d \cdot Q(0))^{-1}=\left(c \cdot C_{0}+d\right)^{-1}, \text { is the } \\
& (n, n)-A P A \text { for } \frac{1}{(c \cdot F+d)} \cdot(a \cdot F+b) .
\end{aligned}
$$

We have to remark that if $\frac{1}{Q}$. P were the (n, m)-APA for F with $n>m$ for instance, then $a . P+b . Q$ was indeed an abstract polynomial of degree n but $c . P+d . Q$ not necessarily an abstract polynomial of degree m. This clarifies the condition in theorem 6.2 that $\frac{1}{Q}$. P is the (n, n)-APA for F.
Another property we can prove is the scale-covariance of abstract Pade-approximants.

Theorem 6.3. :

> Let $\lambda \in \Lambda, \lambda \neq 0, y=\lambda x$ and $\frac{1}{Q} \cdot P$ be the $(n, m)-A P A$ for F.
> If $S(x):=Q(\lambda x), R(x):=P(\lambda x), G(x):=F(\lambda x)$, then $\frac{1}{S} \cdot R$ is the $(n, m)-A P A$ for G.

Proof : We remark that if $L \in L\left(X^{i}, Y\right)$, then $V \mu \in \Lambda: \mu L \in L\left(X^{i}, Y\right)$.
Because $\frac{1}{Q} . P$ is the $(n, m)-A P A$ for $F, \exists s, 0 \leqslant s \leqslant \min \left(n-n^{\prime}, m-m^{\prime}\right)$,
\exists polynomial $T(x)=\sum_{k=n, m}^{n \cdot m+s} T_{k} x^{k}, D(T) \neq \phi \supset[(F \cdot Q-P) \cdot T](x)=0\left(x^{n \cdot m+n+m+1}\right)$.
Thus $[(F \cdot Q-P) \cdot T] \quad(\lambda x)=0\left(x^{n \cdot m+n+m+1}\right)$.
Now $[(F \cdot Q-P) \cdot T](\lambda x)=(G(x) \cdot S(x)-R(x)) \cdot U(x)$ with $U(x):=T(\lambda x)$ and so $[(G \cdot S-R) \cdot U](x)=0\left(x^{n \cdot m+n+m+1}\right)$.
We can prove that $\left\{\begin{array}{l}D(P)=\lambda \cdot D(R)=\{\lambda x \mid R(x) \text { regular in } Y\} \\ D(Q)=\lambda \cdot D(S) \\ D(T)=\lambda \cdot D(U)\end{array}\right.$
So $D(S . U) \neq \phi$ or $D(R . U) \neq \phi$.
The irreducible form of $\frac{1}{S . U} \cdot(R . U)$ is $\frac{1}{S} \cdot R$ and $S(0)=Q(0)=I$, what finally proves the theorem.

7. THE ABSTRACT PADE-TABLE

Let $R_{n, m}$ denote the (n, m)-APA for F if it is not undefined. The $R_{n, m}$ can be ordered for different values of n and m in a table :

Gaps can occur in this Padé-table because of undefined elements. An important property of the table is the next one : the abstract Pade-table consists of squares of equal elements (if one element of the square is defined, all the elements are).

We explicitly restrict ourselves now to spaces $X \supset\{0\}$ (and $Y \supseteq\{0, I\}$ of course). Thus $\exists x \in X: X \neq 0$ and $\forall \lambda \in \Lambda: \lambda . I \in Y$.

Lemma 7.1 :

$$
\begin{gathered}
\forall n \in \mathbb{N}, \quad \exists D_{n} \in L\left(x^{n}, Y\right), \quad \exists\left(x_{1}, \ldots, x_{n}\right) \in x^{n}: \\
D_{n} x_{1} x_{2} \ldots x_{n}=I
\end{gathered}
$$

Proof : The reader must be familiar with the well-known functional analysis theorem of Hahn-Eanach (Rudin W., Functional Analysis, Mc Graw-Hill, New York, 1973, pp. 57).

Let $n=1$.
Take $x_{0} \in X, x_{0} \neq 0$ and define the linear functional ($V \mathrm{pp} .34$)
$f: M=\left\{\lambda \quad x_{0} \mid \lambda \in \Lambda\right\} \rightarrow \Lambda: \lambda x_{0} \rightarrow \lambda$.
Now $\left|f\left(\lambda x_{0}\right)\right|=|\lambda|=\frac{\left\|\lambda x_{0}\right\|}{\left\|x_{0}\right\|}$.
Define the norm $p(x)=\frac{\|x\|}{\left\|x_{0}\right\|}$ on x. Thus $|f(x)| \leqslant p(x) \forall x \in M$.
This linear functional f can be extended to a linear functional $\widetilde{f}: X \rightarrow \Lambda$ such that $\tilde{f}(x)=f(x) \quad \forall x \in M$ and $|\tilde{f}(x)| \leqslant p(x) \forall x \in X$. We now define $D_{1}: X \rightarrow Y: x \rightarrow \widetilde{f}(x)$.I.
Clearly $D_{1} \in L(X, Y)$ and $D_{1} x_{0}=I$ since $\tilde{f}\left(x_{0}\right)=f\left(x_{0}\right)=1$.
If $D_{n-1} \in L\left(x^{n-1}, y\right),\left(x_{1}, \ldots, x_{n-1}\right) \in x^{n-1} \supset-D_{n-1} x_{1} \ldots x_{n-1}=I$,
then we can define for $x \in X: D_{n} x=\tilde{f}(x) \cdot D_{n-1} \in L\left(X^{n-1}, y\right)$.
Then $D_{n} \in L\left(x^{n}, Y\right)$ and $D_{n} x_{0} x_{1} \ldots x_{n-1}=\tilde{f}\left(x_{0}\right) \cdot D_{n-1} x_{1} \ldots x_{n-1}=I$.
This lemma implies that $\forall n \in \mathbb{N}, \exists D_{n} \in L\left(X^{n}, Y\right): D\left(D_{n}\right) \neq \phi$. We shall use this result
in the proofs of the following theorems.

Theorem 7.1, :

$$
\begin{aligned}
& \text { Let } \frac{1}{Q} \cdot P=R_{n, m} \text { be the abstract Padé-approximant of order }(n, m) \\
& \text { for } F \text {. } \\
& \text { Then : a) }(F \cdot Q-P)(x)=\sum_{i=0}^{\infty} J_{i} x^{n^{\prime}+m^{\prime}+t+i+1} \\
& \text { with } J_{i} \in L\left(X^{n^{\prime}+m^{\prime}+t+i+1}, Y\right) \text {, } \\
& t \geqslant 0 \text { and } J_{0} \not \equiv 0 \\
& \text { b) }\left\{\begin{array}{l}
n \leqslant n^{\prime}+t \\
m \leqslant m^{\prime}+t
\end{array}\right. \\
& \text { c) } \forall k, 1 \supset\left\{\begin{array}{l}
n^{\prime} \leqslant k \leqslant n^{\prime}+t: R_{k, 1}=R_{n, m} \\
m^{\prime} \leqslant 1 \leqslant m^{\prime}+t
\end{array}\right.
\end{aligned}
$$

Proof :
a) Suppose $(F \cdot Q-P)(x)=0\left(x^{j}\right)$ with $j<n^{\prime}+m^{\prime}+1$.

Then $\forall r \supset-0 \leqslant r \leqslant \min \left(n-n^{\prime}, m-m^{\prime}\right): j+r+n \cdot m<n \cdot m+n+m+1$
This is in contradiction with theorem 4.3.
b) Suppose $n>n^{\prime}+t$ or $m>m^{\prime}+t$.

Then $\forall r \in \mathbb{N}, \quad 0 \leqslant r \leqslant \min \left(n-n^{\prime}, m-m^{\prime}\right), \forall T_{n, m+r} \in L\left(x^{n \cdot m+r}, Y\right), D\left(T_{n, m+r}\right) \neq \phi$, we know that $\left(F \cdot Q \cdot T_{n \cdot m+r}-P \cdot T_{n \cdot m+r}\right)(x)$ is not $O\left(x^{n \cdot m+n+m+1}\right)$ since $(F \cdot Q-P)(x)=\sum_{i=0}^{\infty} J_{i} x^{n^{\prime}+m^{\prime}+t+i+1}$ with $J_{0} \not \equiv 0$ and $n \cdot m+n^{\prime}+m^{\prime}+t+r+1<n \cdot m+n+m+1$.
This is in contradiction with theorem 4.3.
c) Let

$$
\begin{cases}s=\min \left(k-n^{\prime}, l-m^{\prime}\right), D_{S} \in L\left(X^{k \cdot 1+s}, Y\right), D\left(D_{S}\right) \neq \phi \\ P_{1}=P \cdot D_{S} & \partial P_{1} \leqslant k \cdot 1+k \\ Q_{1}=Q \cdot D_{S} & \partial Q_{1} \leqslant k \cdot 1+1\end{cases}
$$

$\left(F \cdot Q_{1}-P_{1}\right)(x)=0\left(x^{n^{\prime}+m^{\prime}+1+t+s+k .1}\right)$ because of $\left.a\right)$.
Now for $k \leqslant n^{\prime}+t$ and $1 \leqslant m^{\prime}+t: k .1+k+1+1 \leqslant k .1+n^{\prime}+m^{\prime}+t+s+1$.
So $\left(F \cdot Q_{1}-P_{1}\right)(x)=0\left(x^{k \cdot 1+k+1+1}\right)$ and $D\left(P_{1}\right) \neq \phi$ or $D\left(Q_{1}\right) \neq \phi$.

Definition 7.1. : The (n, m)-APA for F is called normal if it occurs only once in the abstract Padé-table.

The abstract Padé-table is called normal if each of its elements is normal.

Theorem 7.2. :
The (n, m)-APA $R_{n, m}=\frac{1}{Q}$. P for F is normal if and only if:
a) $\quad \partial P=n$ and $\partial Q=m$
and
b) $(F \cdot Q-P)(x)=\sum_{i=0}^{\infty} J_{i} x^{n+m+1+i}$
with $J_{i} \in L\left(X^{n+m+1+i}, Y\right)$ and $J_{0} \not \equiv 0$

Proof : \Rightarrow
We proof it by contraposition.
Let $n^{\prime}=\partial P<n$ or $m^{\prime}=\partial Q<m$.
According to theorem 7.1 a): ($F \cdot Q-P)(x)=0\left(x^{n^{\prime}+m^{\prime}+1}\right)$ at least.
Then $R_{n^{\prime}, m^{\prime}}=\frac{1}{Q} \cdot P$ (irreducible and satisfying $Q(0)=I$) since for $D \in L\left(X^{n^{\prime}} \cdot m^{\prime}, Y\right), D(D) \neq \phi:$
$[(F \cdot Q-P) \cdot D](x)=0\left(x^{n^{\prime} \cdot m^{\prime}+n^{\prime}+m^{\prime}+1}\right)$ and $\partial(P \cdot D)=n^{\prime} \cdot m^{\prime}+n^{\prime}$ and $\partial(Q . D)=$ $n^{\prime} . m^{\prime}+m^{\prime}$ 。
$R_{n^{\prime}, m^{\prime}}=R_{n, m}$ contradicts the normality of $R_{n, m}$.
If b) is not valid, then according to theorem 7.1 a) :
(F.Q-P) $(x)=0\left(x^{n+m+1+t}\right)$ with $t>0$ (for $t=0 \quad$ b) would be valid).

This implies that $\forall k, 1: n \leqslant k \leqslant n+t$ and $m \leqslant 1 \leqslant m+t$:
$R_{k, l}=R_{n, m}$ and thus contradicts the normality of $R_{n, m}$.

The proof goes again by contraposition.

Suppose $R_{k, 1}=R_{n, m}$ for $k, 1$ such that $k>n$ or $1>m$.
Now b) implies : (F.Q-P) $(x)=0\left(x^{n+\pi+1}\right)$.
If $s \in N, D_{s} \in L\left(X^{k \cdot 1+s}, Y\right), D\left(D_{s}\right) \neq \phi \partial-\left(F \cdot Q \cdot D_{s}-P \cdot D_{s}\right)(x)=0\left(x^{k \cdot 1+k+1+1}\right)$,
then $k .1+k+1+1 \leqslant n+m+1+k .1+s$ and thus $s>k-n$ or $s>1-m$.
This is a contradiction with theorem 4.3.

8. INTERPOLATING OPERATORS

Theorem 7.1 a) and 7.2 b) allow us to write down the following conclusions. If $\frac{1}{Q}, P$ is the $(n, m)-A P A$ for F then $(F, Q-P)(x)=0\left(x^{n^{\prime}+m^{\prime}+1+t}\right)$ with $t \geqslant 0$. This implies $\left(F-\frac{1}{Q} \cdot P\right)(x)=0\left(x^{n^{\prime}+m^{\prime}+l+t}\right)$ with $t \geqslant 0$, since $Q(0)=I$ is regular. In other words : $\left(F-\frac{1}{Q}, P\right)^{(i)}(0) \equiv 0 \in L\left(X^{i}, Y\right)$ for $i=0, \ldots, n^{\prime}+m^{\prime}+t$. Thus : for $R_{n, m}=\frac{1}{Q} \cdot P: F^{(i)}(0)=\left(\frac{1}{Q} \cdot P\right)^{(i)}(0) i=0, \ldots, n^{\prime}+m^{\prime}+t$ with $t \geqslant 0$.

What is more, if $R_{n, m}$ is normal then $n^{\prime}=n, m^{\prime}=m$ and $(F \cdot Q-P)(x)=0\left(x^{n+m+1}\right)$. Thus : for $R_{n, m}=\frac{1}{Q} \cdot P$ normal : $F^{(i)}(0)=\left(\frac{1}{Q} \cdot P\right)^{(i)}(0) \quad i=0, \ldots, n+m$.

This also agrees with the classical theory of Pade-approximants.

Acknowledgements

I hereby want to thank Prof. Dr. L. Wuytack who was helpful with his comments, and other future readers whose remarks will be gratefully accepted.
(I) de BRUIN, M.G. and van ROSSUM, H.

Formal Padē-approximation. Nieuw Archief voor Wiskunde (3), 23, 1975, pp. 115-130.
(II) GODEMENT, R.

Algebra. Kershaw Publ. Co. Ltd., London, 1969.
(III) KARLSSON, J. and WALLIN, H.

Rational approximation by an interpolation procedure in several variables.
In : Saff, E.B. and Varga, R.S. Padé and rational approximation : theory
and appl. Academic Press, London, 1977, pp. 83-100.
(IV) LARSEN, R.

Banach-Algebras, an introduction. Marcel Dekker, Inc. New York, 1973.
(V) RALL, L.B.

Computational Solution of Nonlinear Operator Equations.
J. Wiley and Sons. New York, 1969.
(VI) BESSIS, J.D. and TALMAN, J.D.

Variational approach to the theory of operator Pade approximants.
Rocky Mountain Journ. Math. $4(2), 1974$, pp. 151-158.
(VII) CHENEY, E.W.

Introduction to Approximation Theory chapter 5 section 6, McGraw-Hi11, New York, 1966.
(VIII) CHISHOLM, J.S.R.

N-variable rational approximants. In : Saff, E.B. and Varga, R.S.
Padé and rational approximation : theory and appl. Academic Press, London, 1977, pp. 23-42.
(IX) COMMON, A.K. and GRAVES-MORRIS, P.R.

Some properties of Chisholm Approximants. Journ. Inst. Math. Applics 13, 1974, pp. 229-232.
(X) GAMMEL, J.L.

Review of two recent generalizations of the Pade approximant.
In : Graves-Morris, P.R. Padé-approximations and their appl.
Academic Press, London, 1973, pp. 3-9.
(XI) GRAVES-MORRIS, P.R. and HUGHES JONES, R. and MAKINSON, G.J.

The calculation of some rational approximants in two variables.
Journ. Inst. Math. Applics 13, 1974, pp. 311-320.
(XII) HUGHES JONES, R.

General Rational Approximants in N-Variables. Journal of approximation Theory 16, 1976, pp. 201-233.
(XIII) KARLSSON, J. and WALLIN, H.

Rational approximation by an interpolation procedure in several variables.
In : Saff, E.B. and Varga, R.S.
Padé and rational approximation : theory and appl. Academic Press, London, 1977, pp. 83-100.
(XIV) LUTTERODT, C.H.

Rational approximants to holomorphic functions in n-dimensions. Journ. Math. Anal. Applic. 53, 1976, pp. 89-98.
(XV) SHAFER, R.E.

On quadratic approximation. SIAM Journ. Num. Anal. 11(2), 1974, pp.447-460.

[^0]: * Roman figures between brackets refer to a work in the reference-list. ** This work is supported by I.W.O.N.L. (Belgium)

