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The use of Padé-approximants for the solution of mathematical problems in science
has great development. Padé-approximants have proved to be very useful in numerical
analysis too : the solution of a nonlinear equation, acceleration of convergence,
numerical integration by using nonlinear techniques, the solution of ordinary and
partial differential equations. Especially in the presence of singularities the use
of Padé-approximants has been very interesting.

Yet we have tried to generalize the concept of Padé-approximant to operator theory,
departing from "power-series-expansions" as is done in the classical theory*.

A lot of interesting properties of classical Padé-approximants remain valid and the
classical Padé-approximant is now a special case of the theory. The notion of
abstract Padé-table is introduced; it also consists of squares of equal elements as

in the classical theory.

*
Roman figures between brackets refer to a work in the reference-list.

** This work is supported by I.W.0.N.L. (Belgium)
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0. NOTATIONS

R0 {positive real numbers}

X,Y always normed vectorspaces or Banach-spaces or Banach-algebras with
unit

L(X,Y) {Tinear bounded operators L : X-Y}

LXK, v {k-Tinear bounded operators L : X>L(X<1,v))

A field R or C

? QTP elements of A

0 unit for addition in a Banach-space, or multilinear operator
LeliXk,Y)sudwthat Lxl"'xk=0 v(xl,..,xk)EXk

I unit for multiplication in a Banach-algebra

1 unit for multiplication in A

FsGoyoe non-linear operators : X-Y

B(xo,r) open ball with centre XOEEX and radius r>o

F(xo,r) closed ball with centre xOGEX and radius r>o

P,Q,R,S,T,.. non-linear operators : X-Y, usually abstract polynomials

aP,3Q,.. exact degree of the abstract polynomial P,Q,..

F(k)(xo) kth Fréchet-derivative of the operator F : X-Y in X,

D(G) {x€X|G(x) is regular in Y} for the operator G :X-—Y (=Banach-algebra)

Ai’Bj’Ck’Ds i-linear, j-linear, k-linear, s-linear operators

1. INTRODUCTION

A lot of attempts have been made to generalize in some way classical Padé-approxi-

mants. We refer e.g. to quadratic Padé-approximants (X,XV), Chebyshev-Padé or
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Legendre-Padé (VII), operator Padé-approximants for formal power series in a para-
meter with non-commuting elements of a certain algebra as coefficients (VI), N-
variable rational approximants (VIII, IX, XI, XII, XIII, XIV),

Another genralisation now is the following one.

Let X and Y be Banach-spaces (same field A). We always work in the norm-topology.
We define L(Xk,Y) ={L|L is a k-linear bounded operator, L :X-*L(Xk'l,Y)} and
L(x%,Y) =Y. So LxgeweXp = (Lx)) (Xgewx, ) €Y With xp,.eux, €X and LxleL(Xk-l,Y)

(V pp. 100),L€l&Xk,Y) is called symmetric if Lxl...xk =in1.-xik, V(xl,...,xk)EXk
and Y permutations (il,.-,ik) of (1,..,k} (V pp. 103).

We remark that the operator TEEL(Xk,Y) defined by f&l.nxk =E%'(1§,.n,ik) inl.,xik
for a given Lel4xk,v) is symmetric.

Let us identify y€Y with the constant operator X=Y : x>y and call it o-linear.

Definition 1.1. : An abstract polynomial is a non-linear operator P :X-Y such that
P(x) =A X"+ .. +A €Y with (A €L(X",Y)
Ai symmetric
The degree of P(x) is n.

The notation for the exact degree of P(x) is aP.

Definition 1.2. : Let X be a Banach-space, Y a Banach-algebra; let F : X=Y and
G : XY be operators.

The product F.G is defined by : (F.G)(x) =F(x).G(x) in Y.

Definition 1.3. : Let Xl”"’Xp’ Zl,...,Zq be vector spaces and Y an algebra (same
field A}, Let F :Xlx."xXp->Y be bounded and p-Tlinear, and
G :le.uqu~*Y be bounded and g~Tinear.

The tensorproduct F ®G :Xlx.uxxplex._xzq->Y is bounded and (p+q)-

linear when defined by (F'®G)x1...xp21...zq =Fx1...xp.Gzl...zq

(IIpp.318).
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One can easily prove that in a Banach-algebra Y :
(F.6)"(xy) =F'(x,) ®G(x ) +F(x ) ®G'(x;) »

where the accent stands for Fréchet-differentiation.

1

We call y€Y regular if there exists y "€Y such that : y.y ~=Il=y ".y;

we call ye€Y singular if it is not regular.

Definition 1.4. : Let G : X—Y with X a Banach-space and Y a Banach-algebra;
D(G) ={x€X|G(x) is regular in Y} is an open set in X (III pp.31).
The operator é— is defined by é : D(G) CX~Y : x~ [6(x)] 1.

One can easily prove that in a commutative Banach-algebra Y :
1,° _p' 1 2
() (%) =-6 (x,) ®(x(x))° .

Let again X and Y both be Banach-spaces.

We note the fact that F(k)(xo), the kth derivative of an operator F :X-Y in Xgs

is a symmetric k-linear operator (V pp. 110).

Abstract polynomials are differentiated as in elementary calculus :

if P{x} =Anxn tm +A0 with AiéL(X1,Y) and A; symmetric, then

n-1

P'(xg) =n.ApXy ~ + . +A1EL(X,Y)

2
ZeL(X V)

(2)(y y=n. (n- n-2
P (xo) n.(n 1).Anx0 + . +2A
(m - n
P (xo) =n. AnEL(X ,Y)
We now can easily prove the fact that if for an abstract polynomial

n . .
P(x)= 2 (:1.x1 with CiGL(X1,Y) and C’i symmetric:P(x) =0 Vx€X, then C,=0
i=0

Yi€{0,..,n}.

_ _ +
Let B(x,,r) —{xEXIIIXo x§<r} for r€R_ and x €X.
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Definition 1.5. : The operator F : XY possesses an abstract Taylor-series in %o i

EB(xo,r) with r>o0 :

1 _(k k
g +h) = = 2 FR x ) 1S for x +heB(x 7).

We then call F abstract analytic in %o (V pp. 113).

2. DEFINITION OF ABSTRACT PADE-APPROXIMANT

To generalize the notion of Padé-approximant we start from analyticity, as in

elementary calculus.

Let F: XY be a non-linear operator, X a Banach-space and Y a Banach-algebra. Let

F be analytic in B(xo,r) with r>o.

So F has the following abstract Taylor-series :

Flx, +x) = ; kl,F(k)( ) <K (1)
with F(O)(xo)xo =F(x,)
and F(9) (x ) eL(xk,y)

We give some exampies of such series :

a) C(lo,11) with the supremum-norm and (f.g)(x) =f(x).g(x) for f,g€C(l0,11), is
a commutative Banach-algebra. Consider the Nemyckii-operator G :C([o,1])~
C(10,11) : x>g(s,x(s)) with gec{™)([0,1] xC([0,11))  (V pp. 95).

Let IX :C(lo,11) »C([0,1]) :x

n
Then clearly G(n)(xo) =§—% (s,xo(s)). [,®..®0[ , n-linear and bounded.
ax ————

n times

b) Consider the Urysohn integral operator U :C([0,11)~>C([0,11) :
x=>r8 f(s,tux(t))dt with Fect™) (10,11 x (0,11 xC(f0,11))  (V pp. 97).

Let[ ] indicate a place-holder for x(t)€C([o,11) (V pp. 90).

Then we write U(n)( ) fl 3—— (s,t,x ( WITl...01 dt
3X [ —

n times
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c¢) Consider the operator P:C'([0,T])~C([o,T]1) :y-*%%--f(t,y) in the initial
value problem P(y) =0 with y(o) =a€R.
Let fect™) (10,11 xC'(10,71)) and I i ([0,T1)>C([0,T]) sy =y

We remark that C(1)([0,T]) with the supremum-norm is a Banach space.

, _d _af(t,
We see that P'(y,) =g¢ ——igyXl (t,yo).Iy and
n
pMy y =22 F(EY) (4 v ). 1 ®..®1 for n>2.
0 " ol "y y
N e~
n times

d) Finally let this nonlinear system of 2 real variables F(i) =(‘E +sin(én) +1)

£%4n2 - 4gn
be given; let Xo =(g). Dszith component-wisemultiplication isa Banach-algebra
2k+1
with unit (7). (-nk . En)
Then F(x) = (1) + (5) + (¢ )+ 3 e
en X) = +
L e N T | 0

Definition 2.1. : Let F : X—+Y be an operator with X and Y Banach-spaces.
We say that F(x) =0(x]) if JoeRr],

3B(0,r) with o<r<1: Vx€B(0,r) : IF(x)I <d.Ix1d (jeN)

Now let X, =0 without loss of generality, and let Y be a commutative Banach-algebra.

In Y we can use the fact that for y,z€Y :y.z regularey regular and z regular.

Definition 2.2. : In Padé-approximation we try to find a couple of abstract poly-

; n.m+n n.m
nomials (P(x),Q(x)) =(An.m+n X + e +An.m X T,
n.m+m n.m
Bn.m+m X + +Bn.m x ")
such that the abstract power series
n.m+m n.m n.m+n n.m, _
F(X)‘(Bn.m+m X *oew +Bn.m X '(An.m+n X *om +An.m x) =

0(Xn.m~l~n+m+1).

(In 5.f) we justify the choice of (P(x), Q(x)) made here).
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. 1 k k
urite 0. F(K)(0) =¢_eL(k,v).
The condition in definition 2.2 is equivalent with (la) and (1b) :

(a)fcyeB, o XM =A x0T ¥xeEX

o' n.m
C.x.B FURLIBAP Xn.m+1 -A Xn.m+1 Vx €X
17" "n.m 0" n.m+l n.m+l
n n.m n-1 n.m+l n.mn _
Cn X ’Bn.m X +Cn—1 X .l + e +Co‘Bn.m+n =
n.mtn
n.m+n v
with BjEOEL(XJ,Y) if 3>n.mm
n+l n.m n+l-m n.m+m _
(1) [ Cppqg X "By o X 7 H e #C g X By mem X =0 VYxeX
. n+m n.m n n.m+m _
Cn+m X ‘Bn.m X + .. +Cn X 'Bn.m+m X =0 V¥x€eX
with €, =0eL(xk,Y) if k < o.

k

For every solution {B xM™J1 5 =0,..,m} of (1b), a solution

n.m+j

AL i XM 4 20,..,n3 of (1a) can be computed.

3. EXISTENCE OF A SOLUTION

a) case : m=0
Choose Bn.m=Bo=I’ unit for the multiplication in Y.
Then A1. =C1. for i =0,..,n are a solution of (la).
The partial sums of (1) are the sought abstract polynomials.

b) case : m#o

¢ .. 3 &
ompute Dn. = I . =[e1.1__1.

® C .. RY.
ig=1 i =1 mg=1 M@yl
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with 11,n.,ﬂn€{1,.,,m}, and sil‘"im =+1 when 11'“1m is an even permutation of
l..m, and . . =-1 when i;..1_dis an odd permutation of 1l..m, and ¢, . =0
1o 1" 'n ipemi
m m
elsewhere.

Compute for h=1,..,m:D by replacing in D the operator Cn—(h-l)+(ih-1)

n.m+h

by the operator - C

ntl+(9,-1)"
Clearly Dn m+hezL(Xn‘m+h,Y) for h=0,..,m.
n.mth . ] . n.m+h _ n.m+h
Now Dn.m+h X is a solution of system (1b); and Dn.m+h X _Bh.m+h .

We thus can consider a symmetric solution, also for (la).
This is a correct procedure to calculate a solution. But in some cases it can be
more practical to solve the system otherwise, e.g. to get the most general form

of the solution.

4. UNICITY OF A SOLUTION

From now on F : XY is a nonlinear operator with X a Banach-space and Y a commutative
Banach-algebra such that for each polynomial T :X->Y with D(T) #4, the set D(T) is

dense in X (or any other equivalent condition).
Iy

m J
This is the case e.g. for F :Rp-+Rq; if T(x)=( 2 Qg L Xy TaeX Py i =1,..,9),
131.-Jp 1 p

q mo difetipEe LT,
D(T) #¢, the set X\ U {(x),m %) €RP| 2 ais + Xjlx P =0} is dense in
i=1 P j1+...+jp =0 J1"'Jp P

X with the norm-topology. We then have the following important lemma.

Lemma 4.1. : Let U,T be abstract polynomials : XY

U(x).T(x) =0 V¥xeX
=2>U=0

{xeX|T(x) regular} is dense in X

After calculating the solution of (la) and (lb) we are going to look for an irredu-

cible rational approximant.
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Definition 4.1. : Let P and Q be 2 abstract polynomials. We call -é— P reducible if
there exist abstract polynomials T,R,S such that P=T.R=R.T and

Q=T7.5=S.T and 3T>1, 3R>0, 3S=>0.

For reducible % . P we know that Yx€D(Q) : (111’ P)(x) = (3 - R) (x).

It is possible that % is defined on a greater domain than %

Lemma 4.2. : Let P,Q,R be abstract polynomials : XY
For R=P.Q : [D(R) =D(P) ND(Q)
D(R)=¢ « D(P)=¢ or D(Q) =¢

Proof : R(x) regular<P(x) regular and Q(x) regular
so D(R) =D(P) ND(Q)
We know that D(P) is open {and so is D(Q))
D(Q) is dense in X if D(Q) #¢ (and so is D(P))
If D(P) =¢ or D(Q) =¢ then evidently D(R) =¢.
The second implication is proved by contraposition.
If D(R) =¢ and Ix=D(P) then Ir, >0 : B(x ,r ) CD(P).
Now Yx€X, ¥ r>o0 :B(x,r)ND(Q) #¢.
And so ¢ #B(x,ro) nD(Q) €b(P) ND(Q).

This implies a contradiction.

Definition 4.2. : Let (P,Q) be a couple of abstract polynomials satisfying definition
2.2 and suppose D(Q) #¢ or D(P) #¢. Possibly%. P is reducible.
Let %* P, be the irreducible form of % . P such that 0€D(Q,) and
and Q (0) =1, if it exists. We then call Ql;-P* an abstract Pade-

approximant of order (n,m) for F.

That irreducible form - . P, with Q,(0) =1 is unique because if P=P,;.T; =P,,.T,

&
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R 1 1 . .
and Q =Q*1.T1 =Q*2.T2 with —Q*—l P*1 and Q*—Z P"(2 irreducible, Q*l(O) =1 =Q*2(O),
D(Tl) #¢ and D(TZ) #¢, then P*I'Q*2= *Z'Qﬂ because of Temma 4.1 and so we can
prove that Jpolynomial R > P*1 =R.P*2, what contradicts the irreducible character

Q,q =R.Q,,
R(0) =1

1
f .P 3R =o.
0 o ") unless o
1
Call n' the exact degree of P_ and m' the exact degree of Q,.
When (P(x) =P, (x).T(x), Q(x) =Q,(x).T(x)) is a solution of (la) and (1b) and %K.P*
is an abstract Padé-approximant of order (n,m) for F, then 3T >n.m and n'<n and

<m.

We have the following theorem concerning the solutions of (la) and (1b).

Theorem 4.1 : If the couples (P,Q) and (R,S) of abstract polynomials both
satisfy (la) and (1b), then P.S=R.Q; in other words :
¥xE€X 1 P(x).S(x) =R(x).Q(x).

Proof : Regard P(x).S{x)-R(x).Q(x) =
[F(x).S(x)}-R(x)1.Q(x)= [F(x).Q(x)-P(x)] .5(x)
Now (F.Q-P)(x)=0(xn'm+"+m+1)
(F.S-R)(x) =O(Xn.m+n+m+1)
But {P.S-R.Q}{x) is an abstract polynomial of degree at most Zn.m+n+m,
while [(F.S-R).Q-(F.Q-P).5] (x) =0(x2n-mn+ml,
So (P.S-R.Q)(x) =0 Vxe€X,

This theorem implies that (%. PY(x) = (3 - R)(x) ¥xED(Q) ND(S).
If D(Q.S) #¢ then D(Q.S) is dense in X.
Possibly 5. P and 5 .R are reducible. If P=P,.T, 0=0,.T, R=R,.U, S=5,.U with
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D(T) #¢ and D(U) #¢, then :
P.S=R.Q=P*.S* =R,.Q, because of lemma 4.1.

We then know that (%:. P {x) =(-é—.R*)(x) VYxe€D{Q, ) ND(S,); if D(Q,.S, ) #¢ then
*

D(Q, .S, ) is dense in X.

We can define an equivalence relation ..~.. in

A={(P,Q)] (P,Q) satisfies definition 2.2 and (D(P) #¢ or D(Q) #¢)}V
{(P*,Q*)|(P=P*.T, Q=Q,.T) satisfies definition 2.2 and (D(P) #¢ or D(Q) #¢)
and %:- P, 1is irreducible} where P.sQ,sTsP,Q are abstract polynomials, by

(P,Q) ~ (R,S) ®P(x).S(x) =R(x).Q(x) ¥xeEX.
If there exists a solution (P,Q) €A such that Q (0) =I, then for all equivalent
solutions (R,S)€A :0€D(S,) because P,S, =R Q, implies : 3 polynomial V>R, =VP, ,
S, =VQ,
V(0) =5(0)

what contradicts the irreducible character of SL .R

— R unless 8V =0 and so (R, =S(0).P;

S, =5(0).Q,
if now S(0) were not regular then (R,S) were no element of A.
If S, (0) =1=0Q,(0) then P,.S, =R,.Q, implies that 3 polynomial V (P, =V.R,
qQ, =V.S,
V(0) =1

In other words : for é—- . R, irreducible we have 3V =0 and so % P and -é R supply
*

the same abstract Padé-approximant of order (n,m) for F when (P,Q) and (R,S) both

satisfy (la) and (1b).

We call 'CIE P, satisfying definition 4.2 the abstract Padé-approximant (APA) of

order (n,m) for F.
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Definition 4.3. : 1If for all the solutions (P,Q) of (la) and (1b) with D(P) # ¢or
D(Q) #¢ the irreducible form Tlg . P, (representant of the equivalence
relation-class) is such that D(Q,) 30, then we call -{1): P, the

abstract rational approximant (ARA) of order (n,m) for F.

(We do come back on abstract rational approximants in 5.f).
We remark that, although F(0) =CO is defined, (%. P}(0) =%— is always undefined for
(P,Q) satisfying definition 2.2 with n>o0 and m>o0, since 0 is always singular in Y.
If for all the solutions (P,Q) of (la) and (1b) : 0€D(Q,) or D(Q) =¢ =D(P), we shall
call the abstract Padé-approximant undefined.

If for the ARA D(Q,) =¢ then for all solutions (R,S) of (la) and (lb) : D(S,)=¢
because D(P, ) ND(S,) =D(R, ) ND(Q, ) =¢ and D(P) #¢; the ARA is in fact useless then.
An example will prove that it is very well possible that for an operator F : XY,
the (n,m) Padé-approximant is defined, while the (1,k) Padé-approximant is undefined
for 1#n or k#m.

+(£)+E" +

° £ 2+'n 2-4271

(’E_') - (E+sin(§n)+1)

1
£24n2 4tn

Consider the operator F o

1+ -
-n -
Then : (1,1)-APA 1‘s< . > P*(x)=P,,(f,)=(},)+((1, c,l)(f,)

0, (=06 =(h+C )

D(Q,) =R%\ {(£,1) £ €R)

(2,1)-APA s L+t 40 Po(x)=C_ +C,x+C x2
2 7 o 1 2
E"4n T -dEn
Q(x) =1
D(Q,) =R?

(1,2)-APA is undefined.

The next theorem is a summary of the previous results.



Theorem 4.2. : For every non-negative value of n and m, the systems (la) and

Proof :
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(1b) are solvable; if the abstract Padé-approximant of order

{n,m) for F :X=Y is defined, it is unique.

For the (n,m)-APA é— . P, we know that P, and Q, are abstract

2 g
polynomials, respectively of degree at wost n and at most m.

Evident.

From now on, when mentioning abstract Padé-approximants, we consider only the abstract

Padé-approximants that are not undefined. Let (P,Q) be a solution of (la} and {1b).

Because of definition 4.2 it is very well possible that (P,,Q,) itself does not

satisfy definition 2.2.

. 1 P .
Theorem 4.3. : Let Q:-.P* be the abstract Padé-approximant of order (n,m) for F.

Proof :

Then 3s:o<s<min(n-n',m-m'), 3Jan abstract polynomial

n.m+s K
T(x)= =z T, x,T

K #0, D(T) #¢2>(P,.T,Q,.T) satisfies
k=n.m

n.m+s

definition 2.2 ; 3(P,.T) =n.mtn'+s and 3(Q, .T) =n.m+m'+s.

If then T(x) =T PURLLI o nemirdl g7 BUBLS

n.m+r n.m+r+l ) n.m+s

with D(Tn.m+r) #b, also (P*'Tn.m+r’Q*’Tn.m+r) satisfies definition

2.2 and o<r<s<min(n-n',m-m').

Because of theorem 4.2 we may consider abstract polynomials P and Q that
satisfy (la) and (1b) and supply P, and Q,. Because of definition 4.2,
there exists an abstract polynomial T such that : P=P,.T and Q=0Q,.T and
3T =Nn.m. Because of lemma 4.2 D(T) #¢ (otherwise D(P) =¢ =D(Q)).

n.m+n : n.m+m

Let n' =aP,,m' =2Q,, P= = A.x', Q= I B
i=n.m J=n.m
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n.m+s K
Consequently T(x)= 2 Tkx with 3T =n.m+s
k=n.m
n.m+n'+s <n.m+n

n.m+m'+s <n.m+m

520
and so o <s<min{n-n‘,m-m").
F(x).Q(x)=P(x) =T(x). [F(x).Q (x)=P, (x)]1 =0

n.n+m+l
(xR

_ n.m+r -
Because T(x) _Tn.m+r X + .. with Tn.mﬂ_eL(X

n.m+r

Lemr (F(x).Q, (x)-P, (x)] =O(Xrun+n+m+1}.

we have that Tm\+r

. REMARKS AND SPECIAL CASES

When X =R =Y (A =R), then the definition of abstract Pad&-approximant is precisely
the classical definition. F is now a real-valued function f of 1 real variable,
with a Taylor-series development Z ck.xk with Cy =% f(k)(o).

k=0

The k-linear operators CkGL(Xk,Y) are :

k _ .
Ckx FCpeXemX € R with ckeR
k

The j-linear functions B.xY =b..X..X€ER, b.ER, j=n,my..,n.mtm and such that :
J RN J
J

b

. + . + . =
€+l Pn.m Chtl-m bn.m+m

0

+ .. +C Q

.b . =
“nemPn.m n bn.m+m

are a solution of (1b).

The i-linear functions A.x' =a..X..XER, a,€R, i=n.m,..,n.mtn such that :
i LA i

i
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p
oPnom = 3n.m
. +C . =
1 bn.m % bn.m+1 3. m+l
{
.b + . +C b =
\Cn n.m Co T n.mn T nmen

are a solution of (la).

. . 1 1
The irreducible form 5:"P* of (5 P (x)=

that Q, (0) =1, is the irreducible form L. P
% :

such that Q, (o) =1.

When we calculate the abstract Padé-approximant of order (n,0) we find the n

partial sum of the abstract Taylor series.

For if Bn.m =1 then Aixi =C1xi, i=0,..,n is a solution of system (la).

This result has also been found in the classical theory.

To find equivalent formulations of the problem of Padé-approximating, we con-
sider a couple of abstract polynomials (P,Q) satisfying definition 2.2. MWe
then know that (F.Q-P)(x) =0 (x-mHm+ly

The systems (la) and (lb) are completely equivalent with :
(F.Q-P)(i)(O) X =0 ¥x€X and i =0,..,n.mtn+m,

because clearly (F.Q-P)(i) (0)=0¢€e L(Xi,Y) for i=0,..,n.m-1 and
(F.0-P) ) (0) x' =0 ¥x€X, i =n.m,.m,n.min is system (la) and (F.Q-P}(1)(0) X'

Yx€X, i=n.mn+l,..,n.mn+m is precisely system {ib).

1f X =RP and Y =R (A=R), then F is a real-valued function of p real variables.

X i
Now L(X‘,Y) is isomorphic with RP. Consequently. for (P(x),Q(x)) satisfying

0
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definition 2.2 the operator (%. P)(x) has the following form :

n.men Jj J
= aj j Xll w X p
+.. 4+ =n.m 1"
3y 3 =n p
n.m+m J
z Biyemd "11 “XoP
+..+j =n.m 1°"
3 3 p

This form agrees with the form proposed by J. Karlsson and H. Wallin :

J J

En . otjlmjp Xll...)(pp
i+ .+3p=o

Em B . xil:;]rp

Jptetip=e J--Jp P

if n=0orm=0 (III).

Let p=2.

To calculate the abstract Padé-approximant we have to calculate the
(n.m+l}+. .+ {(nomin+l}+{(num+l )4+ (n.mem+l) real coefficients TR and

By : .
33y
Now (n.m+1)+..+(n.mtn+1)}+(n.m+1)+.+(n.m+m+1) = n.m. (n+m+2) + +

+gm+1)§m+2)

The formulation in ¢) supplies us an amount of conditions on the derivatives of

(F.Q-P) :
n.m+n+m .

in all z (p+} 1) conditions.
i=n.m

For p=2 these are (n.m+l)}+..+(n.mtn+m+l) conditions.

If we use the extra condition of definition 4.2, we have in all n.m.{n+m+l) +

+ mﬂ)—(ﬂﬁl+l conditions, just enough to calculate the a, . and g, . .
2 3132 3132
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The extra condition is : o-linear term in Q,(x) is I.

If X =RP and Y =RY (A=R), then F is a system of g real-valued functions in p
real variables.

k
Now L(X,Y) is isomorphic with RI*P and L(Xk,Y) isomorphic with RI*P" while an

k-1

k
axp- .
element of R is represented by a row of p matrices (blocks), each con-

taining q rows and p columns;

L =(c,i ; )El_(Xk,Y) = i, is the row-index in the block
e 1
10 Tk+1
12‘"ik is the number of the block (the most right
index grows the fastest)
1k+1 is the column-index in the block.
So L=(c

. . e A B T . ey A B P s )
111...111k+1 111...121k+1 111...1p1k+1 111.,1211k+1 11PemPipyq

The abstract polynomials (P(x),Q(x)) satisfying definition 2.2 now have for
each of the q components the form of the abstract polynomials of p real varia-

bles mentioned in d).

When we would try, in order to calculate the (n,m)-APA, to find a couple of

abstract polynomials (Anxn + e +A0,Bmxm +.u+Bo) such that :

F(x). (BX" + o 4B.) = (A X"+ A ) =0(x"™1) (2)

. . M4 .
nmn LA XM R (T . +B mxn ™ such that:

Instead of (An.m-l-nx n.m nom+m n.

n.m+m n.m n.m+n n.m,_ n.m+n+m+1
F(x).(Bn-m+mx + ow +Bn.mx )-(An.m+nx + . +An'mx Y= 0(x ) (3)

we would remark that this problem is not always solvable (except with Q=0=P),

Consider again the example F(i) =(E;sig(£n)+1) =(é) +(i) +(§2 )+

£ %4n-ttn +n%-4gn
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and take n=1 and m=2.

The system CO.Bo =A0 ¥x € X, has only the solution Q=0=P, and
thus is rot solvable such that

Clx.B0+CO.le =A1x % . P is somewhere defined

2
sz .Bo+Clx.le +CO.Bzx2=0(for n=1, m=3 this is the case for the
first component of the solution),

3 2 2
C3x .BO+C2x .le-+C1xoBzx =0

while (3) is very well solvable, but the solution (P,Q) is such that the irre-
4 2
£ -n+k "-2%n

ducible form of (%.P)(x) is undefined in (°
E-n-zn+zn2
o that

J-

So via (3) we find an abstract rational operator (%-.P)(x) =

is useful in points in the vicinity of (g).

In other words : (2) does not provide us any solution at all (except Q=0=Pp)
(3) does provide an ARA but no APA .

What's more : the situation cannot occur where (2) supplies us the (n,m)-APA
while (3) does nct, because for every solution (P,Q) of the

systems resulting from (2) such that Q. (0)=I and for every

LeL(x™myy :

(L.P,L.Q) is a solution of (la) and (1b)

1 .
T P is the (n,m)-APA

*

And we have to look for an irreducible form anyhow.

6. COVARIANCE-PROPERTIES OF ABSTRACT PADE-APPROXIMANTS

The first property we are going to prove is the reciprocal covariance of abstract

Padé-approximants.



Theorem 6.1. : Suppose F{0} is regular in Y and F is continuous in O

Proof :

(P(x).C2h)
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and %.P is the abstract Padé-approximant of order (n,m)
for F, then % . Q is the abstract Padé-approximant of

order (m,n) for %.

Since {y€ Y]y is regular} is an open set in Y, there exists B(F(O),rz)
with r2>o such that Vy €B(F(0),r2) :y is reguiar. Since F is continuous
in 0, there exists B(O,rl) with ry>o such that VXEB(O,rl) :F(x) is
regular. So é is defined in B(O,r;). We speak about % . P and % . Q too
only on the set of points on which those operators are defined.
P(0) =C0=F(0) is regular= 3B(0,r) : Yx€B(0,r) : P(x) is regular.
So % exists in B(0,r).
Let n' =3P and m' =3Q.

] ] n.m+s K
Ise€N, o<s<min(n-n',m-m'),3polynomial T(x) :k=i.m Tkx s D(T) #¢ >

(Pl(x) =P(x).T(x), Ql(x) =Q(x).T(x))satisfies definition 2.2 for F.
[(F.Q-P).T] (x) = (F.Qq=P;) (x) =0(x"- ™M™y
= (%. . Pl-Ql)(x) =0(xn.m+n+m+1) since %—(0) =C;1 #0 in the abstract Taylor

series for 1 .

F
n.m+s
So Is€N, o<s <min(n-n',m-m'), 3 polynomial T(x)= = Tkxk, D(T) #¢6 >
k=n.m

<Q1(X) =Q(x).T(x), P1(x) =P(x).T(x))satisfies definition 2.2 for %
The irreducible form of % Q1 is -};.Q (D(Pl) #6 or D(Ql) £4).

If we want the o-Tinear term in the denominator to be I, then

1 . (Q(x).C;I) is the abstract Padé-approximant of order (m,n) for‘-g:.

o}
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Theorem 6.2. : Suppose a,b,c,d€Y, c.F(0)+d is regular in Y, a.d-b.c is

Proof :

regular in Y, %-.P is the (n,n)-APA for F and D(c.P+d.Q) #¢

or D(a.P+b.0Q) #¢, then ———. (a.é—.P+b) is the

(C.G . P+d)
(n,yn)-APA for . (a.F+b).
(c.F+d)
c.F(0)+d is regular = c.(% . PY(0)+d 1is regular since F(0) =(%-.P)(0).
So 38(0,r) : % is defined in B(0,r)
1 1 R R .
———T-—-——-.(a. . P+b) is defined in B(O,r)
(c.-Q-. P+d) Q
L (a.F+b) is defined in B(O,r).
(c.F+d}
Let n' =3P and n" =3Q .
nl+s K
IseN:o<s<min(n-n',n-n"), Jpolynomial T(x) = 22 TXs D(T) #¢>
k=n

(Py(x) =P(x).T(x), Qp(x) =Q(x).T(x))satisfies definition 2.2 for F.
2
In other words : [(F.Q-P).TI(x) =(F_Q1_p1)(x) =O(x” +2n+1)-

Now where ———I}-———- .(a.%.P+b) is defined :

1 1 1. 1
e (3k PHb) ot (a.P4b.0).n . (a.P+b.Q).
'UI‘ (aq:Pr )%.(C.P+d.Q) (a-P+0-Q)-q c.P+d.Q (e

Also (c.P+d.Q)(0) =c.F(0)+d is regular in B(O,r).

3(a.P+b.Q) <max(3P,3Q) and 3 [(a.P+b.Q).T] <nn

3(c.P+d.Q) <max(3P,3Q) and 3 [(c.P+d.Q).T <n+n

2
Since (F.Qq-Py)(x) =0(x **"1) and c.F(0)+d is regular,

1
c.F+d*

2
[(a.d-b.c). (F.Q;-P1)1 (x) ~o(x" +2n+1).
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Now gy - (2-F+b). (c.P+d.Q).T - (a.P4b.Q).T =

-(a}m.r.(F.Q-P).(a.d-b.c) = (a.0-b.¢) ey - (F2Qq-P)

2
and [(a.d-b.c)ET%:a.,(F.Ql_pl)](x) —0(x" +2n+1).

We now search the irreducible form of TE—P%E—GT—T. (a.P+b.Q).T.

It is c—PwchﬂI (a.P+b.Q), for if c_P_i—cT_Q (a.P+b.Q) were reducible :

a.P+b.Q =U.V with U,V,W abstract polynomials
c.P+d.Q=U.H and 3U=1

then : [(a.d-b.c).P =d.U.V-b.U.W
(a.d-b.c).Q=a.U.W-c.U.V

and so 1 . P were reducible.

Q

If we want the o-Tinear term in the denominator to be I,

1
c.P+d.Q).e

-1

 (a.P+b.Q) e, with e = (c.P(0)+d.Q(0)) T = (c.C +d) ™!, is the

(n,n)-APA for '(T%D' (a.F4b).

We have to remark that if %-.P were the (n,m)-APA for F with n>m for instance,
then a.P+b.Q was indeed an abstract polynomial of degree n but c.P+d.Q not
necessarily an abstract polynomial of degree m. This clarifies the condition
in theorem 6.2 thatTlI.P is the (n,n)-APA for F.

Another property we can prove is the scale-covariance of abstract Padé-approximants.



Theorem 6.3. : Let A€A, X #0, ¥y =Ax and l. P be the (n,m)-APA for F.

Proof :
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Q
If S(x) := Q(Ax), R(x) : = P(xx), G(x) : = F(Ax), then

R is the (n,m)-APA for G.

We remark that if LeL(X1,Y), then VueA :ulLel(X',Y).

Because % P is the (n,m)-APA for F, 3s, o<s<min(n-n',m-m'},

n.m+s L
J polynomial T(x)= 2 Tkx LO(T) #¢> [(F.Q-P).T) (x) =0(x
k=n.m

n.m+n+m+l )

Thus [(F.Q-P).T] (ax) =0(x"-™m¥m+ly
Now [(F.Q-P).TI(Ax) = (G(x).S(x)-R(x)).U(x) with U(x): =T(Ax) and so
)-
We can prove that | D(P) =Xx.D(R) ={Ax|R(x) regular in Y}
D(Q) =A.D(S)
D(T) =A.D(U)

[(6.5-R).U] (x) =0(Xn.m+n+m+1

So D(S.U) #¢ or D(R.U) #¢.

The irreducible form of <ir. (R.U) is <.R and $(0) =Q(0) = I, what

finally proves the theorem.

7. THE ABSTRACT PADE-TABLE

Let Rn m denote the (n,m)-APA for F if it is not undefined. The Rn n can be

s

ordered for different values of n and m in a table :

R R R

0,0 0,1 0,2 -
Ri,0 R1,1 Ry,2 -
R2,0 Ro,i Ra2
" ;
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Gaps can occur in this Padé-table because of undefined elements. An important
property of the table is the next one : the abstract Padé-table consists of
squares of equal elements (if one element of the square is defined, all the
elements are).

We explicitly restrict ourselves now to spaces Xi{o} {and Y2{0,I} of course).

Thus Ax€X : x #0 and YAEAA . T€Y,

Lenma 7.1 : Ynel, 30 eL(X",Y), 3(xpsemx ) EX":

anl Xoe e Xp =1

Proof :  The reader must be familiar with the well-known functional analysis
theorem of Hahn-Banach (Rudin W., Functional Analysis, Mc Graw-Hill,
New York, 1973, pp. 57).
Let n=1.
Take X, €Xs x, #0 and define the linear functional (V pp.34)

fiM={x XOIAEA}—>A:7\XO—>7\.
X xoﬂ
Now [f(x x )[=]x] = “
x i

Define the norm p(x) == on X. Thus [F(x)| <p(x) ¥xeM,
0

This linear functional f can be extended to a linear functional T :X~A
such that F(x) =f(x) Yx€M and |F(x)| <p(x)¥x€X.
We now define D1 XY x»?(x).l.
Clearly Dy €L(X,Y) and Dy x, =1 since fxy) =f(xy)

n-1 n-1 _
If Dn_IEL(X oY) s (XqsemsXp ) EX > Dpop Xpe=Xo_1 =1,

then we can define for x€X :an=?(x).Dn_ eLex™Lyy.

1
n ~
Then Dy €L(X",Y) and D x XXy 1 =F(x).D 1 XpemXyq =1

This Temma implies that Yne NN, BDneL(Xn,Y) :D(Dn) #¢. We shall use this result
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in the proofs of the following theorems.

Theorem 7.1, : Let -é- . P =Rn m
i

for F.
Then @ a) (F.0-P)(x) = z " M it
i=0

with JieL(Xn'J'm +t+1‘+1’Y)’

t>o0 and J0¥O

b)[n<n'+t

m<m'+t

=R

c) Vk,13{n'<k<n'+t:Rk’] L

m'<T<m'+t

be the abstract Padé-approximant of order (n,m)

Proof : a) Suppose (F.Q-P}(x) =0(xj) with j<n'+m'+l.
Then ¥r>- o<r<min(n-n',m-m') : j+r + n.m<n.m+n+m+1

This is in contradiction with theorem 4.3.

b) Suppose n>n'+t or m>m'+t.

Then Yre N, o<r<min(n-n',m-m'), VTn.m+r

. n.m+n+m+1
we know that (F'Q'Tn.mw'P'Tn.mw)(x) is not O(x

@

L (XM ™TY), D(T, ) #65

(F.Q-P}(x) = = J.xnl+m'+t+i+1 with J0¥0 and n.men'+m'+ter+l <nomin+m+l,

i=o

This is in contradiction with theorem 4.3.

¢) Let s =min(k-n',1-m"'), DSEL(Xk'HS,Y), D(Dg) #¢
Pl =P.Ds 3P1<k.1+k
Ql =Q.DS 8Q1<k.]+1
(F.Qq=Py) (x) =0(an+ml+1+t+s+k']) because of a).

Now for k<n'+t and 1<m'+t : k.T+k+1+1 <k.l+n'+m'+t+s+1.

S0 (F.0p=Py) (x) =0(x* K 1*1y ang p(p 1) £ or D(Q)) #6.
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Definition 7.1. : The (n,m)-APA for F is called normal if it occurs only once

Theorem 7.2. : The (n,m)-APA Rn m =é-.P for F is normal if and only if :

Proof

in the abstract Padé-table.
The abstract Padé-table is called normal 1if each of its

elements is normal.

a) aP=n and 3Q=m
and

b)  (F.Q-P)(x) = z J MMM
i=0

with 3, eL(x™™ 1 vy and g # 0

-
We proof it by contraposition.

Let n' = 3P<n or m' =3Q<m.

According to theorem 7.1 a): (F.Q-P)(x) =0(x" *™ *1) at 1east.

Then Rn. m' =é~.P (irreducible and satisfying Q(0)=I) since for
DeL(x"" ™ v}, D(D) #¢:

[(F.Q-P).D] (x) =0(x™ "™ ¥ *M" 1y 214 5(P.D) =n'.m"+n’ and 3(Q.D) =
n'.m'+m’.

R =R contradicts the normality of Rn m
L]

n',m'  n,m

If b) is not valid, then according to theorem 7.1 a) :

(F.Q-P)(x) =0(x"™1*Y) ith t>0 (for t=0 b) would be valid).
This implies that Yk,1 :n<k<np+t and m<1<m+t :

Rk,] =Rn - and thus contradicts the normality of Rn,m’

<~

The proof goes again by contraposition.
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Suppose R, ; =R, . for k,1 such that k>n or 1>m.

Now b) implies : (F.Q-P)(x) =0(x™™1).

If seN, DSGL(XK']+S,Y), D(Dg) #6> (F.Q.D4-P.D)(x) =O(Xk.1+k+1+1
then k.l+k+1+1 <n+m+l+k.1+s and thus s>k-n or s>1-m.

This is a contradiction with theorem 4.3.

8. INTERPOLATING OPERATORS

Theorem 7.1 a) and 7.2 b) allow us to write down the following conclusions.

If%.P is the (n,m)-APA for F then (F.Q-P)(x) =0(x" "™ *1*1y uith t>o.

This implies (F-%. P)(x) =O(xn m +1"'t) with t>0, since Q(0) =1 is regular.
In other words : (F-%—. P)(i)(O)EOEL(Xi,Y) for 1 =0,..,n"+m'tt.

1

Thus @ for R =6.P:F(1)(O) -3

U.P)(”(O) § 20, 0t M+t With t>o0.

What 1s more, if R PULLEY

n s normal then n'=n, m'=m and (F.Q-P)(x) =0¢(

Thus : for Rim=% P normal : F(i)(O) = .P)(i)(O) 120, ,0HM,

oM

P T
O =

This also agrees with the classical theory of Padé-approximants.
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