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Abstract.

A problem is multidimensional when we are working
with a k-tuple of univariate functions. A problem is
multivariate when a complex-valued function depends
on k variables. Generalizations of the concept of ratio-
nal interpolant to the multivariate case have first been
introduced for data lying on rectangular grids [7, 12,
15]. Here we shall extend these ideas to the case of
general data sets, not necessarily on a rectangular grid
(9]. In this presentation we omit the occurrence of co-
inciding interpolation points and refer therefore to [7].
When all interpolation points coincide, the problem re-
duces to a multivariate Padé approximation problem
which has already extensively been studied in the past

[6].

- ‘Our main aim is not to introduce another new approach
for the solution of & multivariate rational interpolation
problem but to establish a unifying theory that admits
to see the wood for the trees again. We want to present
to the reader a flowchart for when he or she is facing
a multivariate rational interpolation problem. In our
framework previously defined multivariate rational in-
terpolation and Padé approximation techniques, intro-
duced by several authors, can be described and com-
pleted (8] with a number of new techniques. The next
sections mainly discuss the results obtained in [7] and
[10]. We also simplify some results published in [9].

1. Multivariate rational interpolation.

Since the more general situation where f is a function of
more than two variables is only notationally more dif-
ficult, the formulas will be given for bivariate functions
even though we will often use the term “multivariate”
in the text. Suppose we are given a bivariate function
f(#,v) in distinct points (z;,y;) € @ %. The set of data
points can also be specified through a subset I of IN?
as follows

I ={(i,j) € IN?| f(=i,y;) is given}

Sometimes the interpolation set I can be structured so
that it satisfies the “inclusion property”. This means
that if a point belongs to the data set, then the rectan-
gular subset of points emanating from the origin with

the given point as its furthermost corner also lies in the
data set. How this can be achieved in a Iot of situations
is'explained in [11]. If we want to interpolate f in the
points (2;,y;) by a bivariate rational function, i.e. by
a quotient of bivariate polynomials, we must keep in
mind that the “degree” of a bivariate polynomial is not
uniquely determined. Therefore we introduce the con-
cept of “degree set”. The degree set S of a polynomial
s(z,y) is a finite subset of IN?, associated with s(z,y)
in the following way

s(e,y) = Z aijzty!

(ij)€es
Special cases for the set § include
S={(i,j)eN’|0<i<n, 0<j<m}

in which case the polynomial s(z,y) has partial degree
n in  and partial degree m in y. For

S={(i,7) e IN’| 0<i+j < n}

the polynomial s(z, ¥) is said to have homogeneous de-
gree n.

One way to approach the multivariate rational interpo-
lation problem is to specify the degree set N for the
“numerator” polynomial and the degree set D for the
“denominator” polynomial and to construct

p(z,y) = D ayz'yl

N from “numerator”

(4,J)EN
#N=n+1
and (1a)
9(=z,y) = E bijz'y’ D from “denominator”
(.9)eD
#D=m-+1
(1%)
such that
(fa—p)zmye) =0 (kO€I
I from “interpolation conditions”
#l=n+m+1

(1¢)
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It is clear that this problem always has a nontrivial so-
lution for a;; and b;; since it is a homogeneous system of
n+m+1 linear equations in n+m+42 unknowns. Hence
at least one unknown can be chosen freely. This prob-
lem is called the [N/D]; rational interpolation problem
for f(z,y). We have mentioned that, given some data
f(zi,y;) of a bivariate function, either the data points
(zi,y;) can be indexed such that the data set

I={(,j) € IN?| f(z+,y;) is given}

satisfies the inclusion property or they cannot be in-
dexed in that way. The degree sets N and D of numer-
ator and denominator can be chosen freely, but we must
keep in mind that in order to use algorithms developed
in the framework of “degree sets” either N is a subset
of I when I satisfies the inclusion property or N and
D satisfy the inclusion property when I doesn’t.” Of
course it is always possible, in the former case, not to
take advantage of the fact that I satisfies the inclusion
property and use the algorithms for the latter case, for
instance when one should want to take N ¢ I. In any
case it is not allowed for N and D not to satisfy the
inclusion property when I doesn’t. For more details we
refer to the next sections.

When we are dealing with interpolation problems we
must specify whether we are interested in an explicit
formula for the interpolant or only in its value at some
points different from the interpolation points. The for-
mer gives rise to a “coeflicient problem” while the latter
is a “value problem”. What’s more, different techniques
exist for the computation of a rational interpolant: lin-
ear defining equations for the coefficient problem, re-
cursive schemes and continued fraction representations
for the coefficient and value problem.

In the case of multivariate rational interpolation the
unknown numerator and denominator coefficients in the
rational function can also be obtained from a linear sys-
tem of equations. Depending on the structure of the
data set the linear system to be solved is given in {11]
in case I satisfies the inclusion property, and in [10,
12] in case I doesn’t. For more information we refer
to section 2 and the flowchart of section 5. When the
multivariate rational function is written in continued
fraction form then the partial denominators can be ob-
tained using the definition of inverse differences given in
[9]. Because the partial numerators have to be recom-
puted for every evaluation of the rational interpolant
we discuss this technique with the value problem. So
far for the coefficient problem.

On the other hand, the value of that rational inter-
polant can be computed recursively by means of the
E-algorithm where the starting values depend upon the

structure of the data set. Another recursive computa-
tion scheme is any forward algorithm for the calculation
of a convergent when the multivariate rational function
is written in continued fraction form. For I satisfying
the inclusion property a generalized ¢d-algorithm recur-
sively generates the partial numerators and denomina-
tors of the multivariate continued fraction [4]. When
I does not satisfy the inclusion property a Thiele in-
terpolating continued fraction can be constructed. For
more details we refer to the sections 3 and 4 and the
flowchart of section 5.

Before following the flowchart to pick the algorithm tai-
lored to your multivariate rational interpolation prob-
lem, we must fix an enumeration r(7, 7) of the points in
IN? (oxr IN k). We assume throughout the text that this
enumeration is such that

r(k,€) <r(i,j)forallk <iand £ < j (2)

Several numberings (i, j) for IN? satisfy this condition
as for instance

(0,0),(1,0),(0,1),(2,0),(1,1),(0,2),...
or

(0,0),(1,0),(0,1),(1,1),(2,0),(2,1),(0,2),(1,2),(2,2) ...

The index pair that is the #** point in IN? according
to our enumeration is denoted (k,,£,) and f. is short
for the function value f(z,,ye ) while f;; is short for
f(z:,y;). The set of data we can work with is indexed

by
I= {(If’ﬂaZO)r Ty (kn+m,zn+m)}

and always #I = #N + #D — 1. The points in the
degree set N are called and numbered

N = {(ioyjo), v ,(in)jn)}

and those in the degree set D are

D = {(do,€0)y.+,(dmyem)}

When N C I the numbering is such that (i0,j) =
(koy40)s. .+ s(inydn) = (kn,£n). The numbering of the
points within each set follows the numbering (i, 5) cho-
sen for the points (i, 7) in IV? in the sense that the next
point in the set is the next one in line in the intersection
of that set with IN?. The assumption (2) made about
the numbering (%, j) implies the following two facts for
a set N satisfying the inclusion property:
1) all the subsets N{* = {(Z0,50)s++++(3ey7s)} of N
also satisfy the inclusion property
2) the element with lowest rank number in N is the
origin and so (i, j) = (0,0)
Hence from now on the numbering is always such that
when a set satisfies the inclusion property, its subsets
consisting of the first so many points preserve that prop-
erty.
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2. Determinant formulas.
2a. Inclusion property for I.
Consider the following set of basis functions for the real-
valued polynomials in two variables

i—1

i=1

Bij(z,9) = [[(= — =) [[(w — w)
k=0 =0

instead of the basis functions z'ys. Clearly B;;{(z,¥)

is a bivariate polynomial of degree set ({0,7] % [0, 7]} N

IN?. Given the fij = f(=i,y;), we can write in a purely

formal manner

f(:c,y) = Z fOi,OjBij(m’y)

(i,))enN?
where fyio; are the biva.riate divided differences
foip; = flzo, ..y [yo,. .-, 95)
given by
flzoy ey zil [yoy ooy y5] =

f[zl"")zl'][yo""’yj]_f[EO)"'vmi—d][y07"',yj]
i —To

or

f[mo,---,wi][yo,---,y,'] =
flzoye-ovmil[yny- - y5] = F (2o, -y 4] (w0, - -, yj-1]
yj—‘yo_

with
fledlyi] = fij
When denoting divided differences, by default

fl@ays s Tru Ve 1Yt ] = fashy,enty =0

ifdy >k, or eg > £,.

In order to construct rational interpolants for the given
set I we choose two finite index sets N, a subset of I,
and D, a subset of IN? and we put as in [10, 11]

p(z,¥) = Y, ai;Bij(z,9) (3a)

(i,j)EN
az,y) = Y, bi;Bij(z,y) (30)
(i,5)€D
(fa-P)@y)= D, <iBi{zy) (39
(i d)eN*\I

It is easy to see that (3) implies (1). The fact that
(1) implies {3) when I satisfies the inclusion property
is proved in [9]. Now (3c) can be rewritten as

(Li)eN
(L) eI\N (9

Let us assume for the sake of simplicity, that the inter-
polation set I is such that exactly m of the homoge-
neous equations (4) are linearly independent. Degener-
ate cases can be avoided by adding interpolation data
to the set I until the rank of (4) is equal to m [7] but
we omit these cases here. It is obvious that this condi-
tion guarantees the existence of a nontrivial solution of
(4) which is now a homogeneous system in the m +1
unknown denominator coeflicients. The polynomials
p(z,y) and g(z,y) satisfying (3) are then respectively
given by the folowing determinant expressions [10]

(f9)oi0i = Poiyo; = aij,
(fdoie; =0,

Y fdoieoiBij .- 22 famiemiBij
(hJ)EN (4,5)EN

fdukn+1,eol—n+1 fdmkn+1,¢mln+1 (5a)

fdokn+m,€oln+m fdm Entmiemingm

and
Bige, . By, ...
fdokn+1.eoln+1 fdmkn+1,emln+1
. . (5b)
fdukn+m.eoln+m fdmkn+m,emln+m
where
fakuseits = Fl2ais o520 [Yers -y Ue,]

with
fainein =0 if di>dy or e;> ju.

In [8] these determinant formulas are given when all
the interpolation points coincide and a lot of specific
choices for N, D and I are described.

2b. No inclusion property for I.

Using the previous notation for the elements in the sets
N, D and I, and assuming that the rank of the lin-
ear system (1lc) is maximal, a solution p(z, y)/q(x, ¥) =
[N/D]r of the system of n + m -+ 1 homogeneous equa-
tions in the n + m + 2 unknowns a;; and b;; is given

by
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Since we take N and D satisfying the inclusion prop-
erty when I doesn’t, the subsets N.(o) also satisfy the
inclusion property and it is easy to see that for r =
0,...,m+ m the expression (z — z,)*(y — y¢,)’* is a
linear combination of the (s + 1) first columns in the
determinants above:

(@ —2p, )" (v~ ve. )" =

X‘:Z( 1)"*"’( )() Byt Y

0 w=0

Since the sets D{® also satisfy the inclusion property,
we can take analogous linear combinations of the columns
n + 2 through n + m + 2 and, with (4, jo) = (0,0) =
(do, €0), rewrite p(z,y)/q(z,y) as

‘fo . 3
(2 = Tio )" (¥ — Y20 )

(‘c - Eko)i".(y - ylo)jn
So(® — zro )M (3 — eo)

fo(@ — Tio )™ (y — 42, )™™

gioydo zingyln 0 e 0
io , Jo in,,Jn do, €0 dm . e
Tk Yo “’k';yzo f""’koyto foziy Yoy
io _in Jn do
n+myln+m mkn-{-m Ytoim ‘fn+mwkn+m yln+m f"+m k +m yln+m
0 . 0 doy€0 een pdmyem
io , Jo in,,Jn dm , e
iyt Tty fowkoylu fozir e
io in In do dm em
zk,.+,,.yt..+,,. ThntmItogm fn+mzku+myln+m f"+mxkn+m Ytnym

. fﬂ+m(x - a:ku-i-m )dm (y - ylﬂ+m)em

3. Recurrence relations.
3a. Inclusion property for I.
If we denote #N = n + 1 then we can write

iy

+=0

with

d=N_1CNeCNC...CN,_1CN,=N
#N,=s+1
No\ N,y = {(4s,75)};
(24, 7s) > 7(iry 30 );

s=0,...,n

s>

In other words, for each s = 0,...,n we add to N,_,;
the point (4,,7,) which is the next in line in NN IV? ac-
cording to the enumeration given above. Denote #£D =
m + 1 and proceed in the same way. Then

Frtm ,
(% = Thyn ) (¥ = Yty I

(:E - Zk"_‘_m )"" (y - ytu-}-m)j“
fn+m(7’ - wkn+m)dl(y - yl»+m)el

1
(2 — Tio ) (¥ — Yt )

(m - xko)i“ (y = Y, )j'l
fo(z = 2ho ) (¥ — ye)*

fole = z0) (4 — v25)"

e fn+m(3 bt zk.+,..)dm(y - yl.+m)em

1
(8 = Zhypon )1 (¥ — Yty )

(m - zkn-}m )i" (y - y‘n+m )Jn
Fram(T = Thpy )Y = Yty yn)™

(6)
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with for s = 0,...,m

D_, =0,

#D, =s+1, .D.\D-—l = {(dsye,)}-

The notations N, and D, coincide with the previously
introduced heavier notations N,(o) and Dﬁo). The for-
mulas (5) can be rewritten so that they can be com-
puted recursively. Multiplying the (s + 1)th row in
p(z,y) and g(z,y) by B, ,1...,(z,9) (s =1,...,m),
and dividing the (s +1)th column by By, (z,y) (s =
0,...,m) respectively results in

Y. fdeiseoiBdoieo;
(ihj)eN

fdo ka1 ,eol»+1Bdokn+;.eoln+1
fdokn+m.¢oln+m Bdok“+m,eol,.+m

1

fao kn+u=oln+1Bdokn+1.eoLn+x

fd0k0+m'¢0‘n+m Bdoku+m eolngm

where ford < kand e < ¢

Bkl(z1y)
Bde(‘c’y)
=(z—-2z4)...(z --:ck_1)(y—'ye)---(y_yt-—1)

Bdk,et(z’ y) =

andford >kore>{

Sfaket = 0.

For such a quotient of determinants the E-algorithm is
particularly suitable [2, 5]:

E(()’) = Z faoise0iBagiseoss $=0y...,mt+m
(ij)eN,

g(():,). = E (.fd,i,e,de,-i,e,j - fdral"yef—ldef—li’er—lj)

(ilj)eN‘
'1‘=1’...,m; 3=0""’n+m
( 41 1
E® = Er:-)19$-—1,.)- - E,(.'_+1 )95-.-)1.r
g~ g,
s=0,1,...,n; r=1,2,...,m (8a)
(8) - (a1
g(,) - grf—)l,tgs-.—l,r)' - yf-'fﬁt)yii)m
it ) (e)

Iretr —Grlipe
s=r41,r4+2,... (8)

The values E,(-') and gf._'t) are stored as indicated in the
tables 1 and 2.
As a result of these computations

[N/D]IZES:)~

Since the solution p(z,y)/q(x,y) of (4) is unique due to

fact that the rank of (4) is m, the value ESY itself does
not depend upon the numbering of the points within
the sets N, D and I. But this numbering affects the
interpolation conditions satisfied by the intermediate

G z):GN fd'“"eijdm fyem J
LY

Fdmkngssemtnsr Bdmbnys,emtn pr

fdm kngm vemln4m Bdm kntmiem lngm

(7a)
1

fdm knt1semlngy Bd,,. kng1,emlng

fdm kn+m’¢mtn+m Bdm k,.,+,.,, 1em l,.+m

(76)

E-values. For s =0,...,nand r =0,...,m [5]

E’('s) = [N'/Dr]Na U {(k,+1,£,+1), LR (ka+r’ln+r)} )

3b. No inclusion property for I.

We shall now give a recursive computation scheme for
the multivariate rational interpolants {6) under the sole
conditions on the sets N, D, and I that N and D satisfy
the inclusion property. Remember that the E-algorithm
[2] computes a quotient of determinants of the following
form

Table 1.

EY

EO
EY

E® ED
Esz) H

: Elm
ER
E§n+m—1)
E(()Vl-‘i'm)
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Table 2.
0
a1 | gn I
I an 1| g
@ | 983 |1 e
B I g
sq |ogen P el 2
S Lo
| I .
| il e
gon ™ | g™ | ™
Sr Sr-f-c
g1(r) ai(r+s)
gs(r gs(r+s
BY = m(s) = (T elE
1 cee 1
91(r) g1(r+s)
9:(r) v gy(r+3)
From (8) it is clear that (p/q)(z,y) = [N/D]; is of
this form if we define for r = 0,...,n+ m and s =
0,...,min{n,m)
Sp = fr
920-1(r) = (& — 22, )" (v ~ v, )} (10a)
924(r) = frl@ — 20, )* (y — 92, )"
and for s = min{n,m) +1,...,max(n,m)
gmis(r) = (2 —2s,)*(y—ye,)* ifn>m
gnta(r) = fole —2u ) (y—pe)”  ifn<m
(108)

where (7,,7,) € N and (d,,e,) € D. Then

(P/9)(2:9) = [N/D) @0y = ES},,

n+m

We remark that the rows in the numerator and denom-
inator determinants of (6) have been permuted before
defining the functions g,(r). To compute the multivari-
ate rational interpolants recursively, the E-algorithm
can now be applied. For r = 0,...,n + m we have

E(()r) = fr

9c()r.)=y-(7') s=1,...,n+m

A. Cuyt, B. Verdonk/Interpolation on general data sets in C"

(0)

I I gO,m
I
] g
0 0
gf-—?l,r l l gSn)—l,m
nt+m—r+1 n+1
5—-1,7: ) I [ gsn—l,)m
P
I :
I e
r4-1 r r +1
EM = 95—1,2E5—)1 - QE—)l,.E£:1 )
a5 -0
s=1,...,n+m
r (r+1) (r+1) (7)
(ry gS-—)l,tga—l,a B a—l,t) s—1,8
ait = )
2—1,0 ga—l,a
t=s4+1,8+2,...

with the E-values stored as in table 3. )
As can be seen from table 3 the starting values for the
E-algorithm are the function values in the data points
while intermediate E-values E\” are rational functions
interpolating on subsets

IO = {(key &), (g rsn)}

Along a column the "degree” of numerator and denom-
inator is constant and completely determined by the
functions g,(r) appearing in the determinant expres-
sions at that stage. Due to the row permutations per-
formed above, advancing along a diagonal in the E-table
alternatively increases the numerator and denominator
degree sets until one of the sets is exhausted. Definition
(10) of the functions g,(r) enables us to profit from the
recursive scheme as much as possible when it has to be
restarted for other sets N and D, since many interme-
diate values can usually be retained. When comparing
the recursive technique for a general data set I with
the one for'a data set I satisfying the inclusion prop-
erty, we remark that here we have to compute n + m
columns of the E-table while in the previous case we
only had to compute m columns. The compensation
for this phenomenon lies in the fact that this time the
E-algorithm is started with the plain function values
and the previous time the starting values contained di-
vided differences which in their turn consume a number
of recursive computations.
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Table 3.
fo =" = [No/Do] 0
0  _
EL" = [/ Dol 0
fi= [NO/DO]I(l)
EW = [NI/DO]I(I)
1
fa = B = [No/ D] Bl = [Na/ D] 0
0 In+m
+m—
Egn D _ [Nl/Do}I(n+m_1)
1
fn+m = Egn*-‘m) = [NO/DO]I(n+m)
_ 0
4. Continued fraction representation.
4a. Inclusion property for I. where

Let us again suppose for the sake of simplicity that
the homogeneous system of equations (4) has maximal
rank. As a consequence theset I with #/ =n+m+1
is large enough to provide a nondegenerate solution.
Hence we can write

n4-m

I:UI,

=0
with
I, =N,; s=0,.
Lt \Ints—1 = {(kntsy bnta)ls  s=1,...,m
(kntay bngs) > v(kr, £:); nts>r>n+1

With the subsets N,, D, and I, rational interpolants

(N./ Dr]Ia—(—r

can be constructed which satisfy only part of the in-
terpolation conditions and which are of lower “degree”.
To this end it is again necessary that the numbering
7(ir, jr) of the points in IN? is such that the inclusion
property of the set I is carried over to the subsets I,.
We can now fill a table with rational interpolants.

Table 4.
[No/Dolz, [No/Dilr, [No/Dp,
[(N1/Do]p,  [Ni/Dily, [N1/D2]p,
[N2/Dolp, [N2/Dily, [N2/D:]p,

(N/Dl1 = [Nn/Dmlj

n+m

Our aim s to consider descending staircases in this table
of multivariate rational functions:

[Na/DU]I_,

[Now1/Dolg,,, [Nesr/Dilp,,

[Ns+2/D1]I,+3 _{Na+2/Dz]I,+,,=

A (1)
and to construct continued fractions of which the rth
convergent equals the rth interpolant on the staircase.
We restrict ourselves to the case where every three suc-
cessive elements in (11) are different. In [4] we prove
that it is possible to construct a continued fraction of

the form

[Na+1/D°]I.+1 - [N,/Do][, I:

[Na/DO]I. 4 [

(-+1) I
|1+ D T |1+ GFD

(-+1) I (s+1)
IlJr (a+1) |1+ (..+1)+

(.+1) |

(12)

of which the successive convergents equal the successive
elements on thie descending staircase (11). Here

[N./Do]p, = D favireoiBagiseoi(: )

(i,J)EN,
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[Na+1 /DOJI"H = E fdot'.eodeoi.eoj(z, y)
(i|j)€Na+1

and the coefficients q( *+1) and er can be computed
using the following rhombus-rules. For r» > 2

(s+1)

(a+1) (a+1) (s+4r) (s+r—1) (a+7)
€r1 r—2,r~1 gr—2r 1 r—1,r
(a+2) (a+2) (s4+r—1) (s+r+1) _ (a+7)
€r_1 r—1 gr— 2,r~-1 r—1,r r—-1,r
(13)
and forr > 1
R Y AR (14)
¢t 11 )
If we arrange the values q(‘+1) and &tV in a table as
follows
Table 5.
g
e
¢ ¢s”
egz) egl)
3
¢ ¢s?
853) egz)
qg4) qg3)
: (%) (3)

where subscripts indicate columns and superscripts in-
dicate downward sloping diagonals, then (13) links the
elements in the thombus

(Hil)
(+1) (s+1)
r—1 qr
L+
r—-l

and (14) links two elements on an upward sloping diag-

onal
e$_1+1)

qs‘c+2)

If starting values for q( 1 were known, all the values
in the multivariate gd-table could be computed. These
starting values are given by

Fi s+1
pro L BD S B (15)
1 - E("H) _E(‘)
+1)
fdoha+a,¢ol-+aBdo’!.+:.'ol.+: gl(l.l
fdoh.+l-'ol.+1B‘o’¢-+h¢olo+l gg'f’) g((,:iH)

Smce the gd-table given in table 5 needs the help-entries
_q,.t from table 2 we have baptised the rules (13-15)
the gdg-algorithm. This new algorithm coincides with
Rutishauser’s gd-algorithm for the computation of uni-
variate Padé approximants and with Claessens’ gener-
alized gd-algorithm for the computation of univariate
rational interpolants [3]. In analogy with the univari-
ate Padé approximation case and the univariate rational
interpolation case it is also possible to give explicit de-
terminant formulas for the partial numerators in (12).
For these formulas we refer to [7].

4b. No inclusion property for I.

In order to complete the collection of techniques to con-
struct the multivariate rational interpolant [N/D]; we
shall now show that this rational interpolant can also
be obtained as the convergent of a Thiele interpolat-
ing continued fraction. We therefore first reconsider
the univariate formulas. The inverse differences in the
univariate Thiele interpolating continued fraction are
related to the univariate reciprocal differences by the
well-known formulas

plz;] = plz;]
‘P[mj’zj+1] P[z %+1]
elejy . ir] = plzjy s Tivr] — ooy ..
>2

y Bjpk—2)

a-

In [14, p. 111] explicit determinant formulas are given,
separately for odd and even numbered reciprocal dif-
ferences. If we consider the univariate functions g,(r),
r=0,...,2nand s =0,...,n given by

Sr = fr = f(xr)
g20-1(r) = (2 — 2.)’ (16)
924(r) = frl(z — z,)*

then these formulas for the reciprocal differences can be
joined into g-1(r) g-1(r + 5)
g(r) ... go(r+s)
g1(r) .o gi(r+3)

g.—;(r)
ga—z(;) (
(Nzp, ..., —(—1)* gs(T g,r+«!)
P [rs ey @rgs) = ( 1) g-1(r) ... goa(r+9)
go(r) e go("‘ +3)
a(r) . ai(r+s)
g.-;(’”)
91—2(7')
g.__l(r) gn—l(r + a)

(7)
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A definition of multivariate reciprocal differences is now
at hand if we take for the functions g,(r) the bivariate
analogon of the univariate functions (16). With respect
to this definition we would like however to point out a
few things. First it is clear that the bivariate analogon

of the functions (16) is not uniquely determined. It is

a natural choice to take forr =0,1,...and s = 0,1,...
926—1(r) = (13 - a;kr)i' (y - ylr)j. (ia’ja) €N
gZa("') = fr(z - Lk, )d' (y - ytf)e' (dayen) €D
(18)

since this is a special case of definition (10) in that we
require

#N =#D or #N=#D+1 (19)
In the sequel of the text we shall assume that the bi-
variate functions g,(r) are given by (18) with the sets
N and D satisfying (19). Then definition (10) and (18)

coincide. Note that definition (18) and condition (19)
for the sets N and D imply that

E = [N(ys1)2)/Diaja)] %)

or equivalently, that the multivariate rational interpo-
lant is located on the main staircase

(Ng /D)

{N§°’/Dé°’11i0) /D) 10

2/ 10

in the “table” of multivariate rational interpolants. This
is not a restriction. In [9] and at the end of section 5
we show how multivariate rational interpolants located
on other staircases in the “table” can also be obtained
as convergents of multivariate Thiele interpolating con-
tinued fractions. If we introduce the notation

Vo =dpegry b gy +Hdig) +egy

then we can define bivariate reciprocal differences by
plugging (18) into (17) and replacing s by 7,.

p(ir)[(xkr’ ytr)) sy (T’kr-}-a Yty )] =

g-1(r) ... goa(r+s)
go(7) cer go(r+9)
a(r) oo @i(r+8)
gos(r)

i (r+ 9

e gs(r cer Galr s
=1 g-1(r) ... gaa(r+s) (20

g(r) ... go(r+s)
a(r) eer gi(r+8)

as(r)

ga—Z(r)

ga—-l(r) ga——l("' + 3)

Note that this formula is completely analogous to (17)
for the univariate case since then v, = s. The reciprocal
differences (20) are, as in the univariate case, indepen-
dent of the order of the points. Also, if we look back
at the explicit determinant formula (6) in the special
case that p/q(z,y) = [Nm/Dm]I;o) then it is easy to see

from (20) that

coeff of z*myim

P[(zkm ylo)v teey (szm’ ylnm)] =

coeff of zdmyem

and analogously if p/¢(z,y) = [Nin/Dm-1]; then

-1

coeff of z9m-1yem-1

p[(ino,y[n), sy (zk:m—n yl:m—x)] =

coeff of gimyim
This is completely analogous to the univariate situation.
For [Nm/Dm]I(O) the powers zi=yim and % y*™ can be

considered as the “highest degree” terms in p(z,y) and
g(z,y) respectively in the sense that they are the last
added and since N and D satisfy the inclusion property
all powers z*y’ with 7 < i,,, and j < j,, already occur
in p(z,y) and ¢(z,y). In analogy with the univariate
formulas we now define

o5 =pl(2r. ve)] = fr (21)
( ) ~<p[(wk,,ye,) (Tkrgrr Ytr )]
=07 (@192, )s Bk 40 V2010)]
o =ol(h,, ve s (B par Ve )]
—P.”)[(mk,,yt.), NCTIE 7R
PO (CTNRY) RN CTRNNE N B
Now consider the main staircase of multivariate rational

interpolants

[NL#J/DLH]ISQ)-:ESO) s=0,1,...

given previously. If the functions g,(r) are given by (18)
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then we proved in [9] that the successive convergents of
the continued fraction

Ay
l (P[(xkoiylo)’ [EXE) (wk.,,yz,.)]

Plorr )] + 5 | (22)

u=1

are the multivariate rational interpolants on the "main
staircase”

© _ [y /p®
E2r [Nr /Dr ]Igg)

0
Eg?n = [N£+)1/D$0)]I§02|—1

if the partial numerators A, are given by

A = o fog(()h) - f19(()(,?
1=¢ M _ (©
0,1 — 90,1
(0)
91,2
Az = 3"20)‘1950) OWC 0
(—1)1p57 8% ~ 083
(0)
gu-—l U
Ay = ‘PSLO)‘PELO—)I 0 ;
(=1) pE‘O)gEL—)Z,u—l - .‘JS;O—)z,u

( 9(0)2 )
1+ s — . ) w>3
("1)7""‘/’&2195‘—)3,1‘—2 - g1(L-)-3,u—'1

When using the continued fraction representation (22)
to obtain multivariate rational interpolants, it is neces-
sary to compute the inverse and reciprocal differences
and the auxiliary values gﬁ,’,i and with these values com-
pute the partial numerator and denominator coefficients.
The multivariate rational interpolant is then obtained
as a convergent of (22). The computation of the values
gS,’.’, is already discussed. We shall now give a computa-
tion scheme for the bivariate reciprocal differences. The
inverse differences can then be constructed from the re-
ciprocal differences according to (21). The reciprocal

differences pS" satisfy the following recursion [9]:

pgr)' = fr
(r+1 (r
p(r) = (—1)m Jo,1 ) — 90,1)
! fr+1 e fr
T T +1 r
™. _ (_1)m a5 = 93 +9§,§—g§fz > )
fo = ©] ) B e
0,1 0,1 P 41
v _ (" (r (D)
pgr) = (-1)™ a2, " Js—1,s + 9s-1,a ~ 9s—1,s %
: (r) (r+1).
g'—zl’_l gl—2,l-—l

(r+1)  _ (r+1)
p(r+1) (__1)7‘_195-—3,5—-1 8—2,s—1

=1 7 1)
ga-—ﬂ,s-—z > (8 Z 3)

41 1
(r+1) _ (___1)7,_1 gg—s,.)—f‘gg—z .)-1
s—1 (CESY)
95-3,5-2
(r r
. pg"‘)l + (___1)—7,_1 9.—)315_1_95—)3,.—1
9y 3,42
" (—1)1'—‘gir—)z,n—l"girj:z—l
D
9,302

(23)

When we compare this technique with the recursive
computation of [N/D]s in the previous section we re-
mark the following. The continued fraction of which the
partial numerators and denominators are given above
generates only rational interpolants ESO). The recur-
sive scheme also explicitly computes intermediate val-
ues EST) with r # 0. So different algorithms will serve
different purposes.

5. Flowchart.

Let us summarize the previous three sections. In the
case of multivariate rational interpolation the unknown
numerator and denominator coefficients in the ratio-
nal function can be obtained from a linear system of
equations. Depending on the structure of the data set
the linear system to be solved is given below by LIN-
SYS_INCLUSION in case I satisfies the inclusion prop-
erty, and by LINSYS_.GENERAL in case I doesn’t. For

more information we refer to the flowchart.

On the other hand, the value of that rational inter-
polant can be computed recursively by means of the
E-algorithm where the starting values depend upon the
structure of the data set. If I satisfies the inclusion
property and N is a subset of I then [N/D]r = ESY
with the starting values and recursion given in RE-
CURS_INCLUSION below. If I does not satisfy the
inclusion property but N and D do then [N/D]; =
E,(:?_m with the starting values and recursion given in
RECURS_GENERAL. In these recursive computation
schemes intermediate rational interpolants [N,/D,»]I(.)
are generated. The complete set of these interpola;:t's
is given in table 6. The routine RECURS_ INCLUSION
in each step links three entries in the lower level, for
instance those that are boxed, while the routine RE-
CURS_GENERAL in each step links two entries in the
lower level and one entry in a higher level, namely those
that are circled.

Another recursive computation scheme is any forward
algorithm for the calculation of a convergent when the
multivariate rational function is written in continued
fraction form. For I satisfying the inclusion property a
generalized gd-algorithm recursively generates the par-
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tial numerators and denominators of the multivariate
continued fraction [4]. The details can be found in
CONTFRINCLUSION. When I does not satisfy the
inclusion property a Thiele interpolating continued frac-
tion can be constructed of which the partial numer-
ators and denominators are computed recursively as
in CONTFR_.GENERAL. This algorithm extends the
formulas (21-23) below the main descending staircase.
The continued fraction (22) is rediscovered by putting
n = m. So the routines CONTFR_INCLUSION and
CONTFR_.GENERAL both have as successive conver-
gents the elements on the descending staircase (11) with
s = n—m in the lower level of table 6. They can as well
be used to generate elements on a staircase in a higher
level.

The complete flowchart consists of the figures 1, 2 and
3 where figure 1 is the main figure.

LINSYS_INCLUSION:

m
Qigjo — E baye. fininenio =0

u=0

m
@i, jo — E bdyer fauinienin =0

u=0

bdoeofdok,,+;,egl,.+1 +...+ bdmem fdmkn+1,emln+1 =0

bageo faoknimieotnim &+ + F Dden Fdmbnimiemtugm =0

DEF_GFUNC_INCLUSION:

.
96(r) = D faskurestu Baskuente

u==0
—Zfd._lk‘..e._xt..Bd._xk.,e._lz,
=0
s=1,...,m r=0,...,n+m
RECURS_INCLUSION:
B =" fagkeseate Bioks et
s=0,...,n4+m
g((,;’g:gr(.s) r=1,....m s=0,...,n4+m
s+1 s s s
E(a) S‘——l 3E( ) - gf'—)l rES-—_*il)
r +1 s
95'112 gf-—) r

1,

r=1,....m - s=0,...,n+m—7r

(2) +1 +1
() gr‘—1 t-qrs 1, 7)' 1(-:‘-1,3 E‘:)l,r
Ire = G+ (9
gr—l,r T Ir—1,r
t=r+1,74+2,...
CONTFRINCLUSION:
n>m:
+1
(s4+1) _ _fdoko-a-zyeol.+zBdoka+2,eula+2 g(()al )
1 =
fdok.+1.eol.+1 Bdoka+1,eola+1 g((571+2) — g(():'rl)
s=0,...,n4+m~2
(s+r+1) (s+7)
(s+1) 95 1,r gr—l,r 42
e L= TR () 1)
gr——l r
r>1 s=0,...,n+m—-2r -1
(a+2) (8-+2)
(_,+1) €r_1 r—1 x
r Lot
€r_1
(s+r) _ (s+r-1) (s+r)
r—2,r—1 r—2,r—1 r—1,r
(s+7—1) (s+r41) (s+7)
Gre2 ,r—1 r~1,r T Ipeip

r>2 $=0,...,n+m—2r

[N/DJr= 3" Figiw,ioieBiviusiosu+

fioin—m+x 170 Jn—m 41 Bioin—m+1,jojn-m+1
l 1
q(n—m+1) (n—m+1)

_ _(n—m+1)
S+ !————Jq’“
1 4 gip=mFD

l1+q(n—m+1) l1+ CErEy iy

n < m: reciprocal covariance

LINSYS. GENERAL:

fobage, + fobd,exmkoyto -t fobdme,,.:c,,;“yf;“

—_— Qi i — s s 1 . —
®igjo a*ulmkgyto - atn]nmkoyto =0

fn+mbdoeo -+ fn+mbd131$k“+myl"+m + ...

yl oo =0

n+m

T Qigjp T Qiyjy xk

n4m
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DEF_GFUNC_GENERAL:

n>m:
9s(r) =(2 — zx, )" (v ~ w2, )
s=1,...,n—m
In—mt2s-1(r) =(z — zp, )=+ (y — ge, )T
s=1,...,m
Grmmins() = (o = 21,)% (0 = 30,

s=1,...,m
n<m:;
gs(r) =fr(z - mkr)d‘(y"" ye, )
s=1,....m—mn

gm—n-{—?.a—l("') =(.’B - xk,)i‘ (y - ylr)j‘

s=1,...,n
gm—n+23(r) :f,-(:c — Tk, )d"""'""(y - Y, )em—n+5
s=1,...,n
RECURS.GENERAL:
Egs)zf.; 3=0,...,n+m
ggj,)‘:gr(s) r=1,...,n+m s§=0,...,n+m
s s s s+1
E® - g’(’—-lil,ZES—)l - 95-—)1,rE£—1 )
' S
r=1,...,n4+m s§=0,...,n4+m—r

+1 +1
s 9£‘—>1,t9$:_1,2 - 953-1,295-1)1,1-

-

gr,t -
- e,
t=r41,r+2,...

CONTFR_GENERAL:

nzm;:
a+1 s
a(‘)zg_‘(’_i_)__j_‘(lﬂi 5=0 ntm-—1
n-mY1 for1 — fs ’ ’
s s+1 5
d(s) _g§,3 - gg,Z ) n-—-mdg i
n—m¥2 = s+1 241
((1,1 ) n—mag ’o n—maga)
$=0,...,n+m—2
() (s+1
(2) __gr—-l,r B gr‘—-l,z
nem 7 =Ty
r—2,r~1
(a+1)

n—m%p—1

(s+1) _ (9 (2} (s41)

9y _2,r-1"9r—2,r-1
n—mr_1 + _“_(m)_“""—

Ir3r-3

a—m%r_1

r=3,...,n+m $s=0,...,n+m-—r

y(n —m,r) =i, + j, r=0,....,n—m-—1

7(n - m, 1‘) =in—m+ Lr—nizmilJ + Jn.—m+ Lr-nizmil J +

dLr—r;—f-mJ + CLr——r;—{—mJ

T=Nn—M,...,n+m

n_mpg")zf, s=0,...,n+m
n_mp(la) z(_l)“l(n—m.l) n_mo,ga)

s=0,...,n+m—1

o _
() —(—1)(n—mr) <M + n_mag-))

n—-mbFr (s)
gr—2,r—-1

r=2,...,n+m $§=0,...,.n4+m—r7r
n—m‘pga) = n—mpg,) s=0,...,n+m
n—m‘10§8) =n-—-mp(1,) 3:0?"')n+m-1
(2)
n—-m(ps:,) = n-m Sf) - n—mpr’—Z
r=2,...,n4+m 8=0,...,n+m-—r

o 0 (0)
n—mTr(t—?m+r - (.qs;—)m+r—1,n—m+r n—m¢n—m+r/

n—mmnm—m-+tr Y Y
[(_1)7( ’ +) n—mpst—)—m+rg$1—)-m+r—2,n—m+r—1'—
0
gs:-zm+r—2,n—m+r] )
r=2,...,2m
0 0 0
Ay = n—m<p$zlm+1(E‘l('L—)m+l = ESL—)m)
0 0
A2 = n—mT'r(L—)m+2 n—m‘)agn,lm-i-l

() (0) 0
Au - n——an—m+u (n—-m‘pn——m+u—1 + n—-mTvs—)m+u-1)

u=3,...,2m..

Ay
(0)

n—m¢n-—m+u

2m
u=1

For a list of the notations used herein, we refer to the
appendix.
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Table 6.

1
I ~
T
|
|
: [NO/DO]I§n+m.—1) [NO/DI]I§n+m—1)
i
[NI/DO]I(n+m—1)
{ 1
|
|
|
|
|
]
|
: =
| .. No/Dyyme No/Dpym— \
t[NO/DO]I(()l) [NO/DI]I§1) [No/Dyy 2]1.7(112"1_2[ o/ Dy 1]1.7(L2m_1
]
N, /D], Ni/Dpion—
[Nl/'DU]Ifl)[ 1/ 1]I§1) [N1/Dpy 2]1—7(1142"1_1
t
[
|
:
[Nn+m-2/D0]}(l) [Nn+m—2/D111(1)

‘n+m—-2 4o —1
{

Noim—1/D |

Wil
:
! /_\ TN
1. \ .
No/D No/D U 477 W (No/Docvm] o
[No/ °]I§°)[ o/ 1]1§o) O o

[NI/D0]I§0) [Nl/DllIgo) 70

n4-m
Nitm-1/De} 0y /ﬁvn+m—1/D1] (0)
In+m—1 In+m
/
/Nn-{-m/DO]I(O) /
n+tm




428

Figure 1.

see [7]

coinciding

DEF_GFUNC_GENERAL

!

cont. no

interp. points

|
inclusion

property ?

(coordinates of)
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al see [7, 8]

n+1=#N and m+1=#D

choose N and D with NC ;

yes

choose N and D both with

incl. prop; n+1=#N and m+1=#D

coeffs
or
value ?

LINSYS_GENERAL

Figure 2.

LINSYS_INCLUSION

DEF_GFUNC_INCLUSION

fraction

RECURS_GENERAL

form ?

CONTFR_GENERAL

!

Figure 3.

RECURS_INCLUSION

CONTFR_INCLUSION
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Appendix.

We list here a number of notations which are frequently

used throughout the paper.

Bij(z,y) = [Tisb(z — ) [TiZa(y — we)
N = {(io»jo)w--)(inajn)} C -ﬂvz
p(z,y) = E(i,j)eN aiz'yd

or

P(z,9) = X yen 95 Bij(2,y)

D = {(do,&o),. ey (dm,em)} C lNZ
q(z,y) = E(i,j)gp bijmiyj

or

9(z,y) = Xoi jyep bii Bij(z,y)

1= {(kmeﬁ)’ ree ’(kn-l—myen—i-m)}

N‘ = {(i(]’jo)"‘ ')(iujs)} = N£O)
Nﬂ(r) = {(im jr), ceey (i,-.f.,, jr+a)}

firge = flos, o zil(ys, - -5 ve)
Bix,je(=,y) = Bre(z,y)/Bij(z,y)

Yo =gy tijep) Hdigy ey

p("r) = P{(“’k,,yt,), sy (zk,+uylr+. )] = opgr)

(Pgr) = ‘P[(wknylf)v cee ’(mkr-'-a 7ylv+l)] = 0‘0(‘7.)

1.

10,

11.

12.

13.

14.

15.

References.

Brezinski C., “Accélération de la convergence en
Analyse Numérique”, LNM 584, Springer Verlag,
Berlin, 1977.

. Brezinski C., 4 general extrapolation algorithm, Nu-

mer. Math. 35 (1980), 175-187.

. Claessens G., A generalization of the qd-algorithm,

J. Comput. Appl. Math. 7 (1981), 237-247.

. Cuyt A., A multivariate gd-like algorithm, BIT 28

(1988), 98-112.

- Cuyt A., A recursive computation scheme for mul-

tivariate rational interpolants, SIAM J. Num. Anal.
24 (1987), 228-238.

- Cuyt A., A review of multivariate Padé approzi-

mation theory, J. Comput. Appl. Math. 12 & 13
(1985), 221-232.

. Cuyt A., “General order multivariate rational Her-

mite interpolants”, Monograph, University of Ant-
werp (UIA), 1986.

. Cuyt A., Multivariate Padé approzimants revis-

ited, BIT 26 (1986), 71-79.

- Cuyt A. and Verdonk B., Different techniques for

the construction of multivariate rational interpo-
lants, in “Nonlinear Numerical Methods and Ra-
tional Approximation” (Cuyt A. ed.), Reidel (1988),
167-190.

Cuyt A. and Verdonk B., “Different techniques for
the construction of multivariate rational interpo-
lants and Padé approximants”, Monograph, Uni-
versity of Antwerp (UIA), 1988.

Cuyt A. and Verdonk B., General order Newion
Pqdé approzimants for multivariate functions, Nu-
mer. Math. 43 (1984), 293-307.

Cuyt A. and Verdonk B., Multivariate rational in-
terpolation, Computing 34 (1985), 41-61.

Levin D., General order Padé type rational ap-
prozimants defined from double power series, J.
Inst. Math. Appl. 18 (1976), 1-8.
Milne-Thomson L., “The calculus of finite differ-
ences”, Mac Millan, London, 1951.

Siemaszko W., Thiele-type branched continued frac-
tions for two-variable functions, J. Comput. Appl.
Math. 9 (1983), 137-153.



