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The technique to provide a floating-point implementation of a function differs substantially when going
from a fixed precision context to a multiprecision context. In the former, the aim is to provide an optimal
mathematical model, valid on a reduced argument range and requiring as few operations as possible. Here
optimal means that, with respect to the model’s complexity, the truncation error is as small as it can get. The
total relative error should not exceed a prescribed threshold, round-off error and argument reduction effect
included. In the latter, the goal is to provide a more generic technique, from which an approximant with the
user-defined accuracy can be obtained at runtime. Hence best approximants are not an option, since these
models would have to be recomputed every time the precision is altered and a function is evaluated. At the
same time the generic technique should generate an approximant of as low complexity as possible.

We point out how continued fraction representations of functions can be helpful in the multiprecision
context. The newly developed generic technique is mainly based on the use of sharpened a priori truncation
error estimates. The technique is very efficient and even quite competitive when compared to the traditional
fixed precision implementations. The implementation is reliable in the sense that it allows to return a sharp
interval enclosure for the evaluation of the function.

In this work we outline, as far as space restrictions allow, the tools needed to achieve the reliable imple-
mentation of a number of elementary and special functions.

1 Tools

A lot of well-known constants in mathematics, physics and engineering, as well as elementary and special
functions enjoy very nice and rapidly converging continued fraction representations. We shall especially
be interested in real-valued limit-periodic continued fractions and their use in the reliable multiprecision
implementation of the functions they represent. This implementation is built on top of multiprecision
floating-point arithmetic compliant with the principles of the IEEE 754-854 floating-point standards.

1.1 IEEE-based Arithmetic

We assume we have available a multiprecision floating-point implementation of the basic operations, com-
parisons, base and type conversions, which is compliant with the principles of the IEEE 754-854 standards.
Such an implementation is characterised by four parameters: the base β, the precision t and the exponent
range [L, U ]. In the current context, we are at least aiming at non-standard precisions t > 64 when β = 2.

To provide an implementation of a function f(x) in a particular precision, one first needs to de-
velop an efficient mathematical model or approximation F (x) for f(x). This is usually a very time-
consuming effort, because the model changes whenever the precision does. The sum of the truncation
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error |f(x)−F (x)|/|f(x)| and the rounding error |F (x)−F(x)|/|f(x)|, where F(x) denotes the machine
implementation of the model F (x), should preferably not exceed a few ulp where

1ulp = β−t+1

A typical double precision implementation (β = 2, t = 53) of the elementary functions achieves this in
about 25 basic operations. When analyzing the efficiency of our multiprecision implementation, we shall
compare the number of basic operations, required in our approach when the precision is set to t = 53, to
this reference.

1.2 Continued Fractions

We consider continued fraction representations of the form

f(x) =
∞∑

n=1

an

1
an := an(x) (1)

Here an is called the n-th partial numerator. Especially useful are continued fractions of the form (1) where
an(x) = anx with an > 0. Such continued fractions are called S-fractions. The N -th approximant fN (w)
of (1) and the N -th tail tN of (1) are given by

fN (w) =
N−1∑

n=1

an

1
+

aN

1 + w
(2)

tN =
∞∑

n=N+1

an

1
(3)

A continued fraction is said to converge if limN→∞ fN (0) exists. Note that convergence to ∞ is allowed.
The N -th approximant of a continued fraction can also be written as

fN (w) = (s1 ◦ . . . ◦ sN )(w) sn(w) =
an

1 + w
n = N, . . . , 1

1.3 Useful Tails

Using the linear fractional transformations sn, one can define a sequence {Vn}n∈N of value sets for f(x)
by:

sn(Vn) =
an

1 + Vn
⊆ Vn−1 n = N, . . . , 1

The importance of such a sequence of sets lies in the fact that these sets keep track of where certain values
lie. For instance, if w ∈ VN then fN (w) ∈ V0. More importantly, when {Vn}n∈N is a sequence of value
sets for a convergent continued fraction, tN ∈ V N and hence f(x) ∈ V 0 [3, p. 111]. When carefully
monitoring the behaviour of the continued fraction tails, very accurate approximants fN (w) for f(x) can
be computed by making an appropriate choice for w.

We call a continued fraction (1) limit-periodic with period k, if

lim
p→∞

apk+q = ãq q = 1, . . . , k

More can be said about tails of limit-periodic continued fractions with period one, also called one-limit-
periodic continued fractions. Let ã = limn→∞ an and let w̃ be the fixpoint with smallest modulus of the
linear fractional transformation s(w) = ã/(1 + w). It can be shown [3] that

lim
N→∞

tN = w̃
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and also

lim
N→∞

∣∣∣∣
f(x) − fN (w̃)
f(x) − fN (0)

∣∣∣∣ = 0

Hence a suitable choice of w in (2) may result in more rapid convergence of the approximants (w = 0 is
usually used as a reference).

1.4 Oval Sequence Theorem

Besides the sequence of value sets, an equally important role is played by the sequence of convergence sets
{En}n∈N, of which the elements guarantee convergence of the continued fraction as long as each partial
numerator an belongs to the respective set En:

∀n ≥ 1 : an ∈ En ⇒
∞∑

n=1

an

1
converges

Very sharp truncation error estimates can be obtained from the oval sequence theorem [3]. Here we cite
only the real version of this theorem.

Theorem 1.1 Let 0 < Rn < |1 + Cn| and |Cn−1|Rn < |1 + Cn|Rn−1. Then {Vn}n∈N with

Vn = {w ∈ R : |Cn − w| < Rn}

is a sequence of value sets for the sequence {En}n∈N of convergence sets given by

En = {a ∈ R : |a(1 + Cn) − Cn−1((1 + Cn)2 − R2
n)| + Rn|a| ≤ Rn−1((1 + Cn)2 − R2

n)}

For w ∈ VN the truncation error |f(x) − fN (w)| is bounded by

|f(x) − fN (w)| ≤ 2RN
|C0| + R0

|1 + CN |− RN
×

N−1∏

k=1

Mk

where Mk = max{| w
1+w | : w ∈ V k}

The oval En given above actually reduces to an interval [pn, qn] in the real case. It is clear that the
smaller the sets Vn, the smaller the values Mn and hence the smaller the upper bound on the truncation
error |f(x) − fN (w)|. A key role herein is played by the radii Rn.

2 Results

When combining the above ingredients with the characteristic monotonicity behaviour of the partial numer-
ators in a lot of continued fraction representations of elementary and special functions, we obtain extremely
sharp truncation error bounds. The monotonicity properties of the partial numerators indeed make it possi-
ble to give explicit expressions for the radii Rk and the maxima Mk in the oval sequence theorem, and this
for several classes of continued fraction representations. The truncation error bounds obtained are almost
indistinguishable from the true truncation error. Other truncation error bounds which can be found in the
literature, either only hold for w = 0 [2], or are not equally sharp [1].

Since the accumulated rounding error is included in the total error which we bound by only a few ulp,
the actual evaluation of f(x) needs to take place in a slightly larger working precision s > t. The optimal
working precision shall be determined dynamically, depending on the target precision t, the rounding error
analysis and the required accuracy. Our rounding error analysis also takes the effect of argument reduction
into account and hence guarantees a fully reliable evaluation of f(x) over the entire domain.
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