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Abstract. In shape reconstruction, the celebrated Fourier slice theo-
rem plays an essential role. By virtue of the relation between the Radon
transform, the Fourier transform and the 2-dimensional inverse Fourier
transform, the shape of an object can be reconstructed from the knowl-
edge of the object’s Radon transform. Unfortunately, a discrete imple-
mentation requires the use of interpolation techniques, such as in the
filtered back projection.

‘We show how the need for interpolation can be overcome by using the re-
lationship between the Radon transform, the Markov transform and the
2-dimensional Stieltjes transform. When combining the knowledge of an
object’s Radon transform for discrete angles 6, with the less well-known
Padé slice theorem, the object under consideration can be reconstructed
from the solution of a linear least squares problem.

1 The Radon, Markov, and Stieltjes Integral Transforms

The Radon transform Rz (u) of a square-integrable n-variate function f(&) with
Z=(x1,...,xy,) is defined as

—

Rg (u) = f(&) 0(6x — u) d dZ = dzxy ...dx,
R’n

—

with [|€]| = 1 and £Z = u an (n—1)-dimensional manifold orthogonal to &. When

—

n = 2, ¢ is fully determined by an angle 6 and

+oo +oo
Rg(u):/ / f(t,s)0(tcosf + ssinh — u) dt ds

In the sequel of the text, to simplify notation, we mainly focus on the two-
dimensional case, without loss of generality. Let the square-integrable function
f(t, s) be defined in a compact region A of the first quadrant ¢ > 0, s > 0 of the
plane. According to a fundamental property of the Radon transform Rg(u) of
f(t,s) [B], the following relation holds for any square-integrable function F'(u):

+o0 o poo
Ro(w) F(u) du — /O /0 F(ts)F(tcosf+ ssinf) dids (1)
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If we take F(u) =1/(1+ zu) then

“+o0o
Rg )
= dt d 2
90() [oo 1+ZU / / 14+ tCOSO—l—ssmH) 5 (2)

A Markov function is defined to be a function with an integral representation

g(z) = 1]1 z>u du —00<a<0<b< 400, z¢ —o0,—1/b]U[-1/a,+00]
“ (3)

where f(u) is non-trivial and positive and the moments

b
ci:/uif(u)du i=0,1,... (4)

are finite. If f is nonzero in [a, b] with 0 < a < b then (B) is considered on [0, b].
If f is nonzero in [a, b] with a < b < 0, then () is considered on [a, 0]. A Markov

series is defined to be a series
oo

S (—1)iee (5)
i=0
which is derived by a formal expansion of (B). The Markov function g(z) is
also called the Markov transform of the function f(u). Furthermore, in case (B
is the formal series expansion of a Markov function with a nonzero radius of
convergence, the Markov moment problem, in which one reconstructs f(u) from
the moments ¢;, is determinate.
A bivariate Stieltjes function g(z,w) is defined by the integral representation

9z, w) //1+ zt+ws)dtd8 (6)

where f(t, s) is non-trivial and positive. Its finite real-valued moments are given

by
= / / t'sT f(t,s) dt ds
o Jo

A formal expansion of (@) provides a bivariate Stieltjes series

> (1) 7)
i,j=0
The function g(z,w) is also called the bivariate Stieltjes transform of f(¢,s).
Now let us have another look at () and identify our object under recon-
struction with its characteristic function. If f(¢,s) is the characteristic function
of a compact set A lying in the first quadrant, then gy(z) is a Markov function,
because Rg(u) is zero outside a region of compact support. Furthermore, since
9o(2) = g(zcosf,zsinf), there is a close link between the bivariate Stieltjes
transform of the characteristic function of A and the Markov transform of its
Radon transform. In order to translate these properties into an algorithm for
the reconstruction of A from the knowledge of its Radon transform Ry(u), we
need to detail how its Markov transform can be computed.
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2 Reconstruction Algorithm

Let the unknown object A which we identify with its characteristic function lie
in the first quadrant and within the unit circle. This is a matter of shifting and
scaling. The reconstruction of A then goes as follows.

— Input of the algorithm is some indirect information that is available on the
object A, namely its Radon transform for a discrete number of angles 6,
(bivariate case). If the univariate moments C(gg) of the Radon transform or
the multivariate moments ¢;; of f(¢,s) are given instead, one skips the first,
respectively the first two steps of the algorithm.

— Compute the moments

b(6)
Cﬁ) = / u’Ry(u) du
a(0)

for a discrete number of angles 6§ = 6,, with 0 < n < N. From the parame-

terized moments
¢

c = > <f) Cij—icos' O sin=" 0,  £=0,1,2,... (8)

=0

the bivariate moments ¢; ¢—; can be computed by solving (8), possibly in the
least

— With the moments c;; one computes, for successive m, the bivariate homoge-
neous Padé approximant [3[2] 7,,,—1 ., (2, w) of the Stieltjes transform g(z, w).
Increasing m to m + 1, implies adding the moments ¢; 2,,—; and ¢; 21—
to the data. It is well-known [1], p. 228] that on each slice Sy, the sequence
{"m=1,m (%) }men converges rapidly to g(z,w) restricted to that slice. The
relationship between m and N is N = 2m + 1 with N usually rather small.

— At the same time, for each —7/2 < 0,, < 7/2 and each 0 < z; < 1, the
value of the Stieltjes transform g(z,w) evaluated at (z; cosf,,z;sinf,) can
be approximated to high accuracy by a cubature formula

Wi
1+ z;(t; cosbp, + s;sinb,)

M=

f(tl,&) n:O,l,, ]:O,l,

i=1

with weights w; and nodes (;, s;). Subsequently the values f(¢;, s;) are com-
puted from the least squares problem

L

Wi .

tia i)~ i 977,7 i gn 9

; 1+ zj(t; cos b, + s;sinb,) F(tis 5i) ~ 9(; 003 On, 2 s 0) (92)
= lim 7ry,_1,m(2; cosby,z;sinb,)

m—ro0
(9b)

— The reconstruction of A is identified with A ~ {(¢;,s;) | f(ti,s:;) > 0.5}
where the threshold 0.5 is chosen because for the original shape f(t,s) =1
inside A and f(t,s) = 0 outside A.
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Since the homogeneous Padé approximant can be defined analogously in any
number of variables, the procedure for three-dimensional shape reconstruction
is entirely similar.

®e®

Fig.1. A = {(t,u) | ((t—0.1)*> +(u Fig.2. A = {(t,u) | 81¢*/100 + 4u?/9
0.1)% +1/4*> —(t - 0.1)* = 1/16} #0 = 13\ {(tw) | £ +u® < 1/16}#0,
80,#z; = 60,h = k = 1/16,m = 10,¢ 25, #2; = 15,h = k = 1/32,m = 10,¢
5.3 x 1077 1.2 x 1071

I IA

Within the set of interesting objects A we present a non-convex example (Fig-
ure 1) and an example with non-connected boundary (Figure 2). We delimit the
original shape in black, show the reconstructed area in grey and list the num-
ber of angles 6, and the number of radial points z; used in the least squares
formulation (@), the degree m of the Padé denominator and the relative error
€ = Maxy2y2<1 [Tm—2,m—1 — "'m—1,ml|/|Tm—1,m| in the computation of the Padé
approximant. The value € is an estimate of the relative error present in the right
hand side of the linear least squares problem (@)). The least squares problem (),
which is an inverse problem, is in general ill-conditioned and therefore a regu-
larization technique must be applied. In all of the following examples we have
found the technique known as truncated SVD [4] to do an excellent job.

For the approximation of g(z; cosf,,z;siné,) we use the simple compound 4-
point Gauss-Legendre product rule [6, pp. 230-231] with h = 1/16 = k for Figure
1 and h = 1/32 = k for Figure 2.
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