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Abstract. In shape reconstruction, the celebrated Fourier slice theo-
rem plays an essential role. By virtue of the relation between the Radon
transform, the Fourier transform and the 2-dimensional inverse Fourier
transform, the shape of an object can be reconstructed from the knowl-
edge of the object’s Radon transform. Unfortunately, a discrete imple-
mentation requires the use of interpolation techniques, such as in the
filtered back projection.
We show how the need for interpolation can be overcome by using the re-
lationship between the Radon transform, the Markov transform and the
2-dimensional Stieltjes transform. When combining the knowledge of an
object’s Radon transform for discrete angles θ, with the less well-known
Padé slice theorem, the object under consideration can be reconstructed
from the solution of a linear least squares problem.

1 The Radon, Markov, and Stieltjes Integral Transforms

The Radon transform R�ξ (u) of a square-integrable n-variate function f(�x) with
�x = (x1, . . . , xn) is defined as

R�ξ (u) =
∫

Rn

f(�x) δ(�ξ�x − u) d�x d�x = dx1 . . . dxn

with ||�ξ|| = 1 and �ξ�x = u an (n−1)-dimensional manifold orthogonal to �ξ. When
n = 2, �ξ is fully determined by an angle θ and

Rθ(u) =
∫ +∞

−∞

∫ +∞

−∞
f(t, s) δ(t cos θ + s sin θ − u) dt ds

In the sequel of the text, to simplify notation, we mainly focus on the two-
dimensional case, without loss of generality. Let the square-integrable function
f(t, s) be defined in a compact region A of the first quadrant t ≥ 0, s ≥ 0 of the
plane. According to a fundamental property of the Radon transform Rθ(u) of
f(t, s) [5], the following relation holds for any square-integrable function F (u):

∫ +∞

−∞
Rθ(u)F (u) du =

∫ ∞

0

∫ ∞

0
f(t, s)F (t cos θ + s sin θ) dt ds (1)
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If we take F (u) = 1/(1 + zu), then

gθ(z) =
∫ +∞

−∞

Rθ(u)
1 + zu

du =
∫ ∞

0

∫ ∞

0

f(t, s)
1 + (t cos θ + s sin θ)z

dt ds (2)

A Markov function is defined to be a function with an integral representation

g(z) =
∫ b

a

f(u)
1 + zu

du − ∞ < a ≤ 0 ≤ b < +∞, z �∈] − ∞,−1/b] ∪ [−1/a,+∞[

(3)

where f(u) is non-trivial and positive and the moments

ci =
∫ b

a

uif(u) du i = 0, 1, . . . (4)

are finite. If f is nonzero in [a, b] with 0 < a < b then (3) is considered on [0, b].
If f is nonzero in [a, b] with a < b < 0, then (3) is considered on [a, 0]. A Markov
series is defined to be a series

∞∑
i=0

(−1)iciz
i (5)

which is derived by a formal expansion of (3). The Markov function g(z) is
also called the Markov transform of the function f(u). Furthermore, in case (5)
is the formal series expansion of a Markov function with a nonzero radius of
convergence, the Markov moment problem, in which one reconstructs f(u) from
the moments ci, is determinate.

A bivariate Stieltjes function g(z, w) is defined by the integral representation

g(z, w) =
∫ ∞

0

∫ ∞

0

f(t, s)
1 + (zt + ws)

dt ds (6)

where f(t, s) is non-trivial and positive. Its finite real-valued moments are given
by

cij =
∫ ∞

0

∫ ∞

0
tisjf(t, s) dt ds

A formal expansion of (6) provides a bivariate Stieltjes series
∞∑

i,j=0

(
i + j

i

)
(−1)i+jcijz

iwj (7)

The function g(z, w) is also called the bivariate Stieltjes transform of f(t, s).
Now let us have another look at (2) and identify our object under recon-

struction with its characteristic function. If f(t, s) is the characteristic function
of a compact set A lying in the first quadrant, then gθ(z) is a Markov function,
because Rθ(u) is zero outside a region of compact support. Furthermore, since
gθ(z) = g(z cos θ, z sin θ), there is a close link between the bivariate Stieltjes
transform of the characteristic function of A and the Markov transform of its
Radon transform. In order to translate these properties into an algorithm for
the reconstruction of A from the knowledge of its Radon transform Rθ(u), we
need to detail how its Markov transform can be computed.
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2 Reconstruction Algorithm

Let the unknown object A which we identify with its characteristic function lie
in the first quadrant and within the unit circle. This is a matter of shifting and
scaling. The reconstruction of A then goes as follows.

– Input of the algorithm is some indirect information that is available on the
object A, namely its Radon transform for a discrete number of angles θn

(bivariate case). If the univariate moments C
(θ)
� of the Radon transform or

the multivariate moments cij of f(t, s) are given instead, one skips the first,
respectively the first two steps of the algorithm.

– Compute the moments

C
(θ)
� =

∫ b(θ)

a(θ)
u�Rθ(u) du

for a discrete number of angles θ = θn with 0 ≤ n ≤ N . From the parame-
terized moments

C
(θn)
� =

�∑
i=0

(
�

i

)
ci,�−i cosi θn sin�−i θn � = 0, 1, 2, . . . (8)

the bivariate moments ci,�−i can be computed by solving (8), possibly in the
least

– With the moments cij one computes, for successive m, the bivariate homoge-
neous Padé approximant [3,2] rm−1,m(z, w) of the Stieltjes transform g(z, w).
Increasing m to m + 1, implies adding the moments ci,2m−i and ci,2m+1−i

to the data. It is well-known [1, p. 228] that on each slice Sθn
the sequence

{rm−1,m(z)}m∈N converges rapidly to g(z, w) restricted to that slice. The
relationship between m and N is N = 2m + 1 with N usually rather small.

– At the same time, for each −π/2 < θn ≤ π/2 and each 0 ≤ zj ≤ 1, the
value of the Stieltjes transform g(z, w) evaluated at (zj cos θn, zj sin θn) can
be approximated to high accuracy by a cubature formula

L∑
i=1

ωi

1 + zj(ti cos θn + si sin θn)
f(ti, si) n = 0, 1, . . . , j = 0, 1, . . .

with weights ωi and nodes (ti, si). Subsequently the values f(ti, si) are com-
puted from the least squares problem

L∑
i=1

ωi

1 + zj(ti cos θn + si sin θn)
f(ti, si) ≈ g(zj cos θn, zj sin θn) (9a)

= lim
m→∞ rm−1,m(zj cos θn, zj sin θn)

(9b)

– The reconstruction of A is identified with A ≈ {(ti, si) | f(ti, si) ≥ 0.5}
where the threshold 0.5 is chosen because for the original shape f(t, s) = 1
inside A and f(t, s) = 0 outside A.
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Since the homogeneous Padé approximant can be defined analogously in any
number of variables, the procedure for three-dimensional shape reconstruction
is entirely similar.
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Fig. 1. A = {(t, u) | (
(t − 0.1)2 +(u −

0.1)2 +1/42 −(t − 0.1)2 = 1/16} #θn =
80, #zj = 60, h = k = 1/16, m = 10, ε =
5.3 × 10−7
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Fig. 2. A = {(t, u) | 81t2/100 + 4u2/9 ≤
1} \ {(t, u) | t2 + u2 < 1/16}#θn =
25, #zj = 15, h = k = 1/32, m = 10, ε =
1.2 × 10−4

Within the set of interesting objects A we present a non-convex example (Fig-
ure 1) and an example with non-connected boundary (Figure 2). We delimit the
original shape in black, show the reconstructed area in grey and list the num-
ber of angles θn and the number of radial points zj used in the least squares
formulation (9), the degree m of the Padé denominator and the relative error
ε = maxx2+y2≤1 |rm−2,m−1 − rm−1,m|/|rm−1,m| in the computation of the Padé
approximant. The value ε is an estimate of the relative error present in the right
hand side of the linear least squares problem (9). The least squares problem (9),
which is an inverse problem, is in general ill-conditioned and therefore a regu-
larization technique must be applied. In all of the following examples we have
found the technique known as truncated SVD [4] to do an excellent job.
For the approximation of g(zj cos θn, zj sin θn) we use the simple compound 4-
point Gauss-Legendre product rule [6, pp. 230–231] with h = 1/16 = k for Figure
1 and h = 1/32 = k for Figure 2.
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