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A statistical multiplexer is a basic model used in the design and the dimensioning of communication net-
works. The multiplexer model consists of a finite buffer, to store incoming packets, served by a single
server with constant service time, and a more or less complicated arrival process. The aim is to determine
the packet loss probability as a function of the capacity of the buffer. An exact analytic approach is unfea-
sible, and hence we show how techniques from rational approximation can be applied for the computation
of the packet loss. Since the parameters used in such networks may not produce precise probabilities of
interest without having to introduce drastic assumptions, we also need to carry out a perturbation analysis
with respect to these parameters. This will be done by means of interval arithmetic.

1 Introduction

Fixed length packet switches have been studied extensively in the context of ATM switching models.
However, since the Internet is primarily TCP/IP with variable length packets, it is even more important to
analyze switching in the new context. Variable bit rate (VBR) communications with real time constraints
in general, and video communication services (video phone, video conferencing, television distribution)
in particular, are expected to be a major class of services provided by the future Quality of Service (QoS)
enabled Internet. The introduction of statistical multiplexing techniques offers the capability to efficiently
support VBR connections by taking advantage of the variability of the bandwidth requirements of individ-
ual connections.

In order to assess the multiplexing gain, a variety of techniques have been developed in recent years,
based on the exact analysis using matrix-analytic methods [3], fluid approximation [4] and simulation [5]
to study these multiplexer models. In particular, considerable work has been spent at the development of
analytical techniques for evaluating packet loss probabilities, also called cell loss probabilities (CLP).

Recently another and very efficient approach to compute the CLP as a function of the system size has
become available, based on the use of rational approximation [6]. The motivation behind this approach
is that using the matrix-analytic method, it is computationally feasible to evaluate the CLP as a function
of the system size when the system size is small, and moreover it is often possible to obtain information
about the asymptotic behavior [7]. In [6], the authors have employed rational approximants to compute
the CLP, but only for models where the correlation between the cells was ignored. Considering a high
degree of correlation is of major importance when the input consists of more video sources [3]. In [2], a
sampling technique in combination with rational data fitting is proposed for models with more correlation
between the cells. In rare cases it happens that the poles of the computed rational function disturb the fit
of the packet loss probability. In [1], the authors have proposed a method to avoid this problem through an
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a priori optimal placement of poles. The location of the poles is determined, indirectly, from the system
parameters.

Since the parameters used in such networks may not produce precise probabilities of interest without
having to introduce drastic assumptions, it is interesting and important to carry out a perturbation analysis
with respect to these parameters. This will be done here, concurrently with the computation of the rational
model, using interval arithmetic.

2 Model Description

In the multiplexer environment, the arrival of packets to the switch happens in discrete time, with discrete
service time, which makes the discrete time Markov chain a natural modeling choice. We assume that
the arrival of cells which are transmitted by M independent and non-identical information sources to the
multiplexer, can be modeled as a discrete time batch Markovian Arrival Process (D-BMAP), the discrete-
time version of BMAP. Each information source is controlled by a Markov chain, called the background
Markov chain. The basic queueing system which models the multiplexer is a D-BMAP/D/c/N queue with
c discrete time servers, where each server can serve at most one cell per time unit. These servers serve a
buffer with a capacity of N cells which is fed by M independent information sources. When the server is
busy, a maximum of c cells will depart in each slot. Service starts at the beginning of each time slot.

The D-BMAP queueing model is an M/G/1 type queue which is basically a two-dimensional discrete
time Markov chain {(Xn, Yn), n ≥ 0}, where Xn is the number of cells in the buffer and Yn repre-
sents the state of the M sources during the nth time slot. We are interested in the steady state behavior
(X, Y ) ≡ lim

n→∞
(Xn, Yn).

Let D be the transition probability matrix of the process Y and let Dm (m = 0, 1, . . . , M ) denote the
matrix corresponding to m arrivals during a time slot. These matrices can be calculated from the following
system parameters [2]:

1. the number of sources M ;

2. the transition probabilities of the background Markov chains:

- p = [p1, p2, . . . , pM ] and q = [q1, q2, . . . , qM ], if the sources are heterogeneous,

- p and q, if the sources are homogeneous;

3. the cell generation probability:

- d =





d1(0) d1(1)
d2(0) d2(1)

...
...

dM (0) dM (1)




, if the sources are heterogeneous,

- d, if the sources are homogeneous.

The average arrival rate of cells at the multiplexer is given by

λ = η

(
M∑

m=0

mDm

)
e, (1)

where e is a column vector of ones and the vector η is such that ηD = η with ηe = 1.
Under the condition of ergodicity of the chain (X, Y ), i.e. the load ρ = λ/c < 1, the stationary

distribution vector Π := {π0, π1, . . . , πN} with πi ∈ 2M
satisfies

ΠP = Π and Πe = 1, (2)
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where the transition probability matrix P of the process (X, Y ) [2] is a square matrix of size

- (N + 1)2M × (N + 1)2M , if the sources are heterogeneous,

- (N + 1)(M + 1) × (N + 1)(M + 1), if the sources are homogeneous,

and is given by

P =





D0 D1 . . . DN−c . . . DN−1 BN

D0 D1 . . . DN−c . . . DN−1 BN
...

...
D0 D1 . . . DN−c . . . DN−1 BN

0 D0 . . . DN−c−1 . . . DN−2 BN−1

0 0 . . . DN−c−2 . . . DN−3 BN−2
...

...
0 0 . . . D0 . . . Dc−1 Bc





, (3)

with Bi =
∑M

j=i Dj , i = c, . . . , N .
The packet loss probability function, as a function of the buffer size N , is then given by

PL(N) :=
1
λ

N∑

n=0

πn

M∑

k=0

[k + n − (N + min(N, c))]+Dke, (4)

where [x]+ := max(0, x).
It has been proved that for M/G/1-type queues, the log PL(N) decays exponentially [7]. That is,

log PL(N) ≈ ξN, as N → ∞. (5)

3 Rational Approximation

Because of the fact that the function log PL(N) asymptotically behaves as ξN for large N , polynomial
approximation techniques for log PL(N) are not suitable. Every polynomial model of degree larger than
one, would blow up for large N . However, a rational function rn(N) of numerator degree n + 1 and
denominator degree n, has a similar asymptotic behavior as that of log PL(N). Remains to compute the
coefficients in numerator and denominator of the rational function

rn(N) =
pn(N)
qn(N)

=
∑n+1

i=0 aiN i

∑n
i=0 biN i

, (6)

mostly from computed or measured values of log PL(Nj) for small buffer sizes Nj , to fit the behavior of
log PL(N) using (4).

The rational model is fully specified when we know its numerator and denominator coefficients b1, . . . ,
bn and a0, . . . , an+1, a total of 2n + 2 coefficients (the constant term b0 in the denominator is only a nor-
malization constant for the rational function [10] and is therefore assigned the value 1, whenever possible).
These coefficients are determined from sampling log PL(N) at chosen Nj for j = 0, . . . , 2n while one
value is determined from the asymptotic behavior

lim
N→∞

log PL(N) ≈ ξN =
an+1

bn
N. (7)

In rare cases it happens that the poles of the computed rational function disturb the fit of the packet loss
probability. To circumvent this problem, in [1], the authors have used a multipoint Padé-type approxima-
tion technique.
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4 Interval Arithmetic

In this paper we study the effect of uncertainties in the parameters p (or p), q (or q) and d (or d) on
one hand and/or uncertainties in the values of log PL(Nj), when coming from measurements or verified
computations performed for minimal and maximal load of ρ of the networks under investigation. To
automatically incorporate this perturbation analysis in the computation of the rational fitting technique, we
need to use tools from interval arithmetic. The verified computation of rn(N) requires enclosures for or
the verified computation of:

- p (or p), q (or q) and d (or d) which are involved in the matrices Dm;

- the samples log PL(Nj);

- the asymptotic slope ξ [9].

One of the important finds is that PL(N) is rather sensitive with respect to small changes in the parameters.
This of course has its effect on the data fitting problem. When using a rational model with prescribed poles
to fit the interval data, as in the multipoint Pade-type approach, the verified computation of rn(N) can be
based on the results developed in [8].
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