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Sparse interpolation from at least 2n uniformly spaced interpolation points tj can be traced back to
the exponential fitting method

f(tj) =

nX

i=1

↵i exp(�itj), ↵i,�i 2 R, tj 2 R (1)

of de Prony from the 18-th century [5]. Almost 200 years later this basic problem is also reformulated as
a generalized eigenvalue problem [8]. We generalize (1) to sparse interpolation problems of the form

f(tj) =
nX

i=1

↵ig(�i; tj), ↵i,�i 2 C, tj 2 R (2)

and some multivariate formulations thereof, from corresponding regular interpolation point patterns. Con-
currently we introduce the wavelet inspired paradigm of dilation and translation for the analysis (2) of
these complex-valued structured univariate or multivariate samples. The new method is the result of a
search on how to solve ambiguity problems in exponential analysis, such as aliasing which arises from too
coarsely sampled data, or collisions which may occur when handling projected data.

Fine or coarse sampling is controlled by the choice of a scale or dilation which allows to stretch and
shrink the uniform sampling scheme required for exponential analysis. Ambiguity problems can be solved
by means of a one- or multidimensional translation of the sampling locations, also called an identification
shift [2, 3].

We require the functions g(�i; t) and the set of points tj to satisfy a discrete generalized eigenfunction
relation of the form

LX

k=�L

akg(�i; tj+k) = �ij

RX

k=�R

bkg(�i; tj+k), �ij 2 C. (3)

This property allows us to split the nonlinear interpolation problem (2) into the separate computation of
the nonlinear parameters �i on the one hand and the linear ↵i on the other, as in de Prony’s method. As
mentioned, the ensemble of sampling points tj is going to be dictated by scaling factors and shifts.

In the past some attempts have already been made at the identification of functions g(�i; t) and sampling
point patterns tj satisfying (3) with the aim to solve the interpolation problem (2). In computer algebra
sparse interpolation is generalized to non-standard bases [9, 6, 1, 7]. In signal processing exponential
analysis is generalized to include some additional functions [11, 12, 14, 13]. Here we present a more
coherent study undertaken at the occasion of [2, 3]: we solve the nonlinear interpolation problem (2) by
reformulating it as a structured generalized eigenvalue problem derived from (3) and one or more structured
linear systems of equations.
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While by the introduction of a scale factor, we loose the uniqueness of the solution in the nonlinear
step of the algorithm, we gain the option to stretch, shrink and eventually translate an otherwise uniform
scheme of sample points. The translation of the sample points in the subsequent linear step of the algorithm
allows to restore the lost uniqueness.

The list of functions g(�i; t) that the theory covers, includes the exponential function, the trigonometric
functions cosine, sine, the hyperbolic cosine and sine functions, the Tchebyshev (1-st, 2-nd, 3-rd, 4-th kind)
and spread polynomials, the sinc, gamma and Gaussian function, and several multivariate versions of all
of the above.

The new paradigm generalizes the theory of sparse interpolation by extending it to sub-Nyquist sam-
pling [10], by generalizing it to the d-dimensional case with the use of only (d + 1)n samples [4], and by
o↵ering some new choices for the g(�i; t).
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