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Script environment

This script does not depend on the random number generator state.

clear

close all

6. Numerical illustration (part one)

We take d = 2, write u := x1, v := x2, x = (u, v)t and consider the exponential
sum

f(u, v) =
4∑

j=1

αj exp(〈φj , x〉)

with

φ1 = (−0.5, 1 + i2π × 0.5), α1 = 1.7 exp(i2π/10),

φ2 = (0.1 + i2π × 3.4, 1.5 + i2π × 5.2), α2 = 1.1 exp(i2π/20),

φ3 = (0.1 + i2π × 3.4,−0.5 + i2π × 12.6), α3 = 0.9,

φ4 = (−2.5 + i2π × 23.2,−10 + i2π × 82.3), α4 = 9.2 exp(i2π/2).

phi = [-0.5, 1+2*pi*1i*0.5;

0.1+2*pi*1i*3.4, 1.5+2*pi*1i*5.2;

0.1+2*pi*1i*3.4, -0.5+2*pi*1i*12.6;

-2.5+2*pi*1i*23.2, -10+2*pi*1i*82.3];

alpha = [1.7*exp(2*pi*1i/10);

1.1*exp(2*pi*1i/20);
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0.9;

9.2*exp(2*pi*1i/2)];

f = @(u,v) sum(alpha.*exp(phi*[u(:),v(:)].’),1);

When outputting numerical results for this small scale example, we round all
values to 4 significant digits (all relative errors are less than 5 × 10−4). The
numerical effect of the choice of the vectors ∆ and δi throughout the process,
and that of the underlying one-dimensional Prony-like method in use, is beyond
the scope of this paper and will be the subject of further investigations.

First we show the simple case described in the Sections 2 and 3, where the
number of terms n = 4 is known up front and no collisions of the inner products
in the samples occur. Of course, the latter is hard to predict in practice. We
take ∆ = (0.01, 0.01) and δ1 = (−0.01, 0.01). Using 8 equidistant evaluations at
x = s∆, s = 0, . . . , 7, we obtain from (4) the values of exp(Φj) and can deduce
the Φj , j = 1, . . . , 4 because |=φji| < π/|∆i|:

Φ1 = 〈φ1,∆〉 ≈ 0.005000 + 0.03142i,

Φ2 = 〈φ2,∆〉 ≈ 0.01600 + 0.5404i,

Φ3 = 〈φ3,∆〉 ≈ −0.004000 + 1.005i,

Φ4 = 〈φ4,∆〉 ≈ −0.125 + 0.3456i.

Delta = 1/4*[0.01,0.01];

delta1 = 1/4*[-0.01,0.01];

F = f((0:7)*Delta(1),(0:7)*Delta(2));

exp_Phi = eig(F(hankel(2:5,5:8)),F(hankel(1:4,4:7)));

Phi_recon = log(exp_Phi)

Phi_recon =

-0.0312 + 1.6572i

-0.0010 + 0.2513i

0.0040 + 0.1351i

0.0012 + 0.0079i

We obtain the coefficients αj , j = 1, . . . , 4 from (6):

α1 = 1.700 exp(i2π × 0.1000),

α2 = 1.100 exp(i2π × 0.05000),

α3 = 0.9000,
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α4 = 9.200 exp(i2π × 0.5000),

V = vandermonde(exp_Phi,4);

alpha_recon = V\F(1:4).’

alpha_recon =

-9.2000 + 0.0000i

0.9000 - 0.0000i

1.0462 + 0.3399i

1.3753 + 0.9992i

From 4 additional evaluations along the identification shift δ1, we obtain the
values of exp(Φ11), exp(Φ21), exp(Φ31), exp(Φ41) from (8). Their exponents are
the projections of the vectors φj along δ1:

Φ11 = 〈φ1, δ1〉 ≈ 0.01500 + 0.03142i,

Φ21 = 〈φ2, δ1〉 ≈ 0.01400 + 0.1131i,

Φ31 = 〈φ3, δ1〉 ≈ −0.006000 + 0.5781i,

Φ41 = 〈φ4, δ1〉 ≈ −0.07500 + 3.713i,

F2 = f((0:3)*Delta(1)+delta1(1),(0:3)*Delta(2)+delta1(2));

Phi2_recon = log((V\F2(:))./alpha_recon)

Phi2_recon =

-0.0187 + 0.9283i

-0.0015 + 0.1445i

0.0035 + 0.0283i

0.0038 + 0.0079i

We finally obtain the values of φj = (φj1, φj2)t by solving for each j = 1, . . . , 4(
∆1 ∆2

δ11 δ12

)(
φj1
φj2

)
=

(
Φj

Φj1

)

phi_recon = zeros(4,2);

for j = 1:4

phi_recon(j,:) = [Delta;delta1]\[Phi_recon(j);Phi2_recon(j)];

end

phi_recon
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phi_recon =

1.0e+02 *

-0.0250 + 1.4577i -0.1000 + 5.1711i

0.0010 + 0.2136i -0.0050 + 0.7917i

0.0010 + 0.2136i 0.0150 + 0.3267i

-0.0050 + 0.0000i 0.0100 + 0.0314i
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