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Script environment

This script does not depend on the random number generator state.

clear
close all

6. Numerical illustration (part one)

We take d = 2, write u := 1, v := 22, z = (u,v)" and consider the exponential
sum

f.e) = 32 oy expl(6;.)

with
¢1 = (—0.5,1 +i27 x 0.5), a1 = 1.7exp(i27/10),
¢2 = (0.1 +1i27 x 3.4,1.5 +i27 x 5.2), as = 1.1exp(i27/20),
¢3 = (0.1 + 127 x 3.4, —0.5 4 i27 x 12.6), az = 0.9,
¢4 = (—2.5 412w x 23.2, —10 + i27 x 82.3), ay = 9.2exp(i27/2).
phi = [-0.5, 1+2*pi*1i*0.5;
0.1+24pi*1i%3.4, 1.5+2%pi*1ix5.2;
0.1+2xpi*1i*3.4, -0.5+2%pi*1i*12.6;
-2.5+2%pi*1i*23.2, -10+2*%pi*1i*82.3];

alpha = [1.7*exp(2*pi*1i/10);
1.1%xexp(2*pi*1i/20);



0.9;
9.2%exp(2*pi*1i/2)];
f = @(u,v) sum(alpha.*exp(phi*[u(:),v(:)]1.7),1);

When outputting numerical results for this small scale example, we round all
values to 4 significant digits (all relative errors are less than 5 x 10=%). The
numerical effect of the choice of the vectors A and §; throughout the process,
and that of the underlying one-dimensional Prony-like method in use, is beyond
the scope of this paper and will be the subject of further investigations.

First we show the simple case described in the Sections 2 and 3, where the
number of terms n = 4 is known up front and no collisions of the inner products
in the samples occur. Of course, the latter is hard to predict in practice. We
take A = (0.01,0.01) and §; = (—0.01,0.01). Using 8 equidistant evaluations at
z=3sA,s=0,...,7, we obtain from (4) the values of exp(®;) and can deduce
the ®;,j =1,...,4 because [S¢pj;| < 7/|A|:

By = (¢, A) ~ 0.005000 + 0.03142i,
By = (dg, A) ~ 0.01600 + 0.5404i,
D3 = (B3, A) ~ —0.004000 + 1.005i,

Delta = 1/4%[0.01,0.01];

deltal = 1/4*x[-0.01,0.01];

F = £((0:7)*Delta(1),(0:7)*Delta(2));

exp_Phi = eig(F(hankel(2:5,5:8)),F(hankel(1:4,4:7)));
Phi_recon = log(exp_Phi)

Phi_recon =

-0.0312 + 1.6572i1
-0.0010 + 0.25131
0.0040 + 0.13511
0.0012 + 0.00791

We obtain the coefficients a;,j =1,...,4 from (6):
ay = 1.700 exp(i27 x 0.1000),
ag = 1.100 exp(i27 x 0.05000),

as = 0.9000,



ay = 9.200 exp(i27 x 0.5000),

V = vandermonde (exp_Phi,4);
alpha_recon = V\F(1:4).’

alpha_recon

-9.2000 + 0.00001
0.9000 - 0.00001
1.0462 + 0.3399i
1.3753 + 0.9992i

From 4 additional evaluations along the identification shift d;, we obtain the
values of exp(®P11), exp(Pa1), exp(P31), exp(Pyq1) from (8). Their exponents are
the projections of the vectors ¢; along d:

(
®gy = (¢h2,81) ~ 0.01400 + 0.1131i,
B3y = (¢3,81) ~ —0.006000 + 0.5781i,
(

@41 = (;547 (51> ~ —0.07500 + 37131,

F2 = £((0:3)*Delta(1)+deltal (1), (0:3)*Delta(2)+deltal(2));
Phi2_recon = log((V\F2(:))./alpha_recon)

Phi2_recon =

-0.0187 + 0.92831
-0.0015 + 0.14451
0.0035 + 0.0283i
0.0038 + 0.00791

We finally obtain the values of ¢; = (¢,1, ¢j2)" by solving for each j =1,...,4
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phi_recon = zeros(4,2);
for j = 1:4
phi_recon(j,:) = [Delta;deltal]\[Phi_recon(j);Phi2_recon(j)];
end
phi_recon



phi_recon =
1.0e+02 *

-0.0250 + 1.4577i -0.1000 + 5.17111
0.0010 + 0.21361i -0.0050 + 0.79171
0.0010 + 0.21361i 0.0150 + 0.3267i

-0.0050 + 0.00001 0.0100 + 0.03141



