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ABSTRACT
We present a method to extract factors of multivariate poly-
nomials with complex coefficients in floating point arith-
metic. We establish the connection between the reciprocal of
a multivariate polynomial and its Taylor expansion. Since
the multivariate Taylor coefficients are determined by the
irreducible factors of the given polynomial, we reconstruct
the factors from the Taylor expansion. As each irreducible
factor, regardless of its multiplicity, can be separately ex-
tracted, our method can lead toward the complete numerical
factorization of multivariate polynomials.

Categories and Subject Descriptors
F.2.1 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Numerical Algorithms and Prob-
lems; G.1 [Mathematics of Computing]: Numerical Anal-
ysis; I.1.2 [Computing Methodologies]: Symbolic and
Algebraic Manipulation—Algorithms

General Terms
algorithms, theory

Keywords
polynomial factorization, numerical factorization, approx-
imate factorization, partial fraction, qd-algorithm, Taylor
expansion, multivariate Padé approximation, pole detection,
symbolic-numeric method

1. INTRODUCTION
We consider the problem of computing an irreducible fac-

tor of a given multivariate polynomial in a finite precision
environment. For a given polynomial f , we look at the con-
nection between the factors of f and the Taylor expansion of
its reciprocal 1/f . While the univariate case has been exten-
sively studied (e.g., see [8, pp. 596–597]), until recently the
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detailed analysis of the multivariate case is lacking. In this
paper, we establish the connection between the irreducible
factors of a multivariate polynomial f(x1, . . . , xn) and the
Taylor expansion of its reciprocal 1/f(x1, . . . , xn). Based on
such connection, we present a method that can reconstruct
the irreducible factors of f(x1, . . . , xn) from the associated
Taylor expansion.

A multivariate polynomial is a product of finitely many
irreducible factors. Recovering each individual factor even-
tually leads to the computation of all factors and hence the
complete factorization of the given multivariate polynomial.

The problem of factoring multivariate polynomials in com-
plex floating point arithmetic was recognized by Kaltofen
in 1985 when he gave one of the first polynomial-time al-
gorithms to factorize multivariate polynomials exactly [11].
The idea to tackle the inexact case as an optimization prob-
lem was independently suggested by Sasaki et al. [20] and
Kaltofen [12].

With a renewed interest, over the past ten years, a signif-
icant body of results in numerical, as well as approximate,
multivariate polynomial factorization have been achieved
(see, e.g., [6, 9, 10, 2, 4, 19, 1, 21, 7, 5, 15] and the references
given there). A related problem is to bound a polynomial
away from irreducible polynomials, for which we refer to
[17, 14, 18]. Such accomplishments undoubtedly contribute
to the recent prominence of symbolic-numeric computation
and approximate algebra.

Our method is a numerical approach by nature because it
is built upon the convergence behavior of the multivariate
Taylor expansion. The novelty of our approach is three-
fold. First, compared to existing factorization algorithms,
our method reconstructs a factor at a time. Second, we do
not require the input polynomial to be square-free. Third,
our method is suitable for iterative improvement. In other
words, under the constraint of finite precision, when more
computational effort is spent, the accuracy increases.

In addition, the construction of a multivariate partial frac-
tion decomposition in a monomial order is embedded in our
theoretical development (for multivariate partial fractions
implemented in certain computer algebra systems, we refer
to [22]).

The rest of the paper is organized as follows. Section 2
establishes the theoretical connection between a multivari-
ate polynomial and the Taylor expansion of its reciprocal.
Based on the established connection, Section 3 shows how
to extract factors of a given polynomial in various circum-
stances. Then in Section 4, we comment on our results and
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conclude with current research directions in complete facto-
rization and irreducibility testing.

2. TAYLOR EXPANSION AND FACTORS
In this section we explain the connection between the fac-

tors of a polynomial and the Taylor expansion of its recipro-
cal. The univariate case is repeated in §2.1. The multivari-
ate connection for a single irreducible factor, which under-
pins our computational method, is presented in §2.2. In §2.3
we discuss the situation when there exist multiple factors in
the given multivariate polynomial.

2.1 Univariate Case
Suppose f(x) is a univariate polynomial. For simplicity,

let f(x) = (1−b1x) · · · (1−btx) ∈ C[x] with |b1| > · · · > |bt|.
Consider the Taylor expansion of its reciprocal

1

f(x)
=

r1

1− b1x
+ · · ·+ rt

1− btx

= r1(1 + b1x + b2
1x

2 + · · · ) + · · ·

+ rt(1 + btx + b2
t x

2 + · · · ) =

∞∑
i=0

aix
i (1)

with r1, . . . , rt ∈ C.
By recollecting the coefficients in (1), the i-th Taylor co-

efficient ai is a sum of exponentials. For i = 0, 1, 2, . . . ,

ai = r1b
i
1 + · · ·+ rtb

i
t. (2)

Consider the sequence {ai}i≥0 formed by the Taylor co-
efficients ai. From (2) we can conclude that the sequence
{ai}i≥0 is linearly generated and the associated generating
polynomial is Λ(z) = (z− b1) · · · (z− bt). Further details are
referred to, e.g., [16].

Note that |b1| > · · · > |bt|. As i → ∞, the exponential
term r1b

i
1 dominates ai. Such property can be exploited

to recover the zeros of f(x) in an order that reflects their
moduli [8, pp. 617–618].

As for the more general case of |b1| ≥ · · · ≥ |bt|, where
|bi| = · · · = |bj | for some 1 ≤ i < j ≤ t, we refer to the
treatment in [8, §7.9].

2.2 Multivariate: Single Irreducible Factor
We investigate the multivariate case. Consider an irre-

ducible polynomial f(x1, . . . , xn) ∈ C[x1, . . . , xn]. Assume
f has a non-zero constant term since this can always be
achieved by shifting the basis in the representation of f . For
the time being we assume for simplicity that f(0, . . . , 0) 6= 0
and hence that the Taylor series in the sequel are all consid-
ered around the origin.

Let the constant of f(x1, . . . , xn) be normalized to 1, that
is, f(x1, . . . , xn) = 1 − p(x1, . . . , xn) with p(x1, . . . , xn) ∈
C[x1, . . . , xn] having zero constant. Expand 1/f into a geo-
metric series,

1

f
=

1

1− p
= 1 + p + p2 + · · ·

=
∑

(i1,...,in)∈Zn
≥0

ai1,...,inxi1
1 · · ·xin

n =
∑

~ı∈Zn
≥0

a~ıx
~ı, (3)

in which a~ıx
~ı = ai1,...,inxi1

1 · · ·xin
n and ~ı = (i1, . . . , in) ∈

Zn
≥0.
The expression (3) may appear similar to (1). However,

in the univariate case the Taylor coefficients can be directly

expressed in terms of the linear factors in the denomina-
tor, while in the multivariate case (3), the denominator
1 − p(x1, . . . , xn) is an irreducible multivariate polynomial.
The multivariate Taylor coefficients a~ı are not directly col-
lected in the powers of p, but with respect to the power
standard basis x~ı = xi1

1 · · ·xin
n . Our aim is to explore the

multivariate Taylor coefficients a~ı in relation to the polyno-
mial 1− p(x1, . . . , xn).

Since p(x1, . . . , xn) is assumed to have constant zero, let

p(x1, . . . , xn) =b1x
~d1 + b2x

~d2 + · · ·+ bmx
~dm , (4)

in which x
~di denotes x

di1
1 · · ·xdin

n for i = 1, . . . , m. Let x
~d0 =

x0
1 · · ·x0

n = 1. We require bm 6= 0 and x
~d1 , . . . , x

~dm to follow
a monomial order ≺ in C[x1, . . . , xn] such that1

multideg(x
~d0) ≺ multideg(x

~d1) ≺ multideg(x
~d2) ≺ · · ·

· · · ≺ · · · ≺ multideg(x
~dm) ≺ · · · . (5)

In general, a monomial order does not guarantee that each
monomial can be enumerated from (0, . . . , 0). For exam-
ple, in C[x1, x2] under a lexicographic order, monomial x1

can never be enumerated from (0, 0) because for all n ≥ 0,
multideg(xn

2 ) ≺lex multideg(x1). From now on, in our dis-
cussion we restrict all monomial orders to enumerate any
monomial in C[x1, . . . , xn] under consideration.

Let Ai = pi. We consider the sequence of multivari-
ate polynomials {Ai = pi}i≥0. By definition, the sequence
{Ai}i≥0 is generated by the linear recurrence equation Ai+1

= p · Ai that can be represented by an associated gener-
ating polynomial Λ(p) = 1 − p. Because p(x1, . . . , xn) ∈
C[x1, . . . , xn], the generating polynomial Λ(p) is a multi-
variate polynomial in C[x1, . . . , xn]. We remark that if p is
regarded as an indeterminate, then Λ(p) can be viewed as a
univariate polynomial in p. That is, Λ(p) ∈ C[p].

Substitute (4) in the linear recurrence Ai+1 = p ·Ai,

Ai+1 = Aib1x
~d1 + · · ·+ Aibmx

~dm . (6)

Suppose M, N ∈ Z>0 and M < N . By repeating (6) for
i = M, M + 1, . . . , N − 1, N , we form the following system:

AN = AN−1b1x
~d1 + · · ·+ AN−1bmx

~dm

AN−1 = AN−2b1x
~d1 + · · ·+ AN−2bmx

~dm

... =
...

AM+1 = AMb1x
~d1 + · · ·+ AMbmx

~dm

AM = AM−1b1x
~d1 + · · ·+ AM−1bmx

~dm . (7)

Now we are ready to link the polynomial 1 − p = 1 −
b1x

~d1 − · · · − bmx
~dm to the multivariate Taylor coefficients

a~ı from (3). But for later reference we first elaborate in
Theorems 1 and 2 a few details regarding the system (7).

According to (3), any a~ıx
~ı from the Taylor expansion can

be collected from the infinite series 1+p+· · · = A0+A1+· · · .
But Theorem 1 states that it is sufficient to collect a~ıx

~ı from
a finite partial sum AM + · · · + AN of the infinite series
A0 + A1 + · · · .

1See, e.g., [3, pp. 54–60] for the definition and further dis-
cussions of a monomial order.
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Theorem 1. Under a monomial order ≺, for any a~kx
~k in

(3) such that multideg(a~kx
~k) º multideg(p) = multideg(A1),

there exist M, N ∈ Z>0 such that M < N and a~kx
~k can be

obtained from collecting either side of (7).

Proof. Since multideg(a~kx
~k) º multideg(A1), at least

we have M = 1 that satisfies (7) and the existence of M is
proved.

We use ω(p) to denote the non-zero term with the low-
est multivariate degree in p. Because p has zero constant,

multideg(ω(p)) Â multideg(x
~d0) = (0, . . . , 0), and

multideg(ω(Ai+1)) = multideg(ω(pi+1))

= multideg(ω(pi)) + multideg(ω(p))

Â multideg(ω(pi)) = multideg(ω(Ai)).

Therefore, as i →∞, the monomial order of ω(Ai) is strictly

increasing. For a given a~kx
~k there exists N ∈ Z>0 such that

multideg(a~kx
~k) ¹ multideg(ω(AN ))

≺ multideg(ω(AN+1)) ≺ · · · .

We conclude that AN+1 + · · · does not contribute to a~kx
~k.

Hence a~kx
~k can be collected from AM + · · ·+AN alone.

Theorem 2 further insists that M and N , which are used
to define a finite partial sum for collecting a given a~ı, can si-
multaneously increase to infinity as multideg(a~ıx

~ı) increases.

Theorem 2. For any M > 0, there exists ~k ∈ Zn
≥0 such

that for any a~ıx
~ı satisfying multideg(a~ıx

~ı) º multideg(a~kx
~k),

a~ıx
~ı can be collected from AM + · · ·+ AN for an N ∈ Z>0.

In other words, if multideg(a~ıx
~ı) follows a monomial or-

der that enumerates every term, then a~ıx
~ı can be collected

from a finite partial sum AM +· · ·+AN and both M, N →∞.

Proof. Since N →∞ is obvious, we only show M →∞.
Because our monomial order enumerates all terms, for any

M > 0 there exists ~k = (k1, . . . , kn) such that multideg(a~kx
~k)

º multideg(AM ). Since multideg(AM ) Â multideg(AM−1)
Â · · · , the sum A0+· · ·+AM−1 does not contain a term with

monomial x
~k or of a higher multivariate degree. As a result,

if multideg(a~ıx
~ı) º multideg(a~kx

~k), a~ıx
~ı can be collected

from AM + AM+1 + · · ·+ AN and both M, N →∞.

Theorems 1 and 2 form the foundation of our convergence
arguments: as multideg(a~ıx

~ı) increases, a~ıx
~ı can be solely

captured from higher powers of p in (3), which better reflect
the dominating properties.

Return to the link between the irreducible polynomial 1−p

and the multivariate Taylor coefficients a~k. We collect a~kx
~k

from both sides of (7),

a~kx
~k = a~k−~d1

x
~k−~d1 · b1x

~d1 + a~k−~d2
x

~k−~d2 · b2x
~d2 + · · ·

+ a~k−~dm
x

~k−~dm · bmx
~dm

resulting in

a~k = b1a~k−~d1
+ b2a~k−~d2

+ · · ·+ bma~k−~dm
. (8)

We repeat (8) for various a~kj
, . . . , a~kj+m−1

, m times in

total, and form a linear system



a~kj−~d1
· · · a~kj−~dm

...
. . .

...
a~kj+m−1−~d1

· · · a~kj+m−1−~dm







b1

...
bm




=




a~kj

...
a~kj+m−1


 . (9)

Theorem 3. Let x
~d` follow the monomial order in (5),

then the ` + 1 by ` + 1 matrix

∆
(j)
`+1 =




a~kj
a~kj−~d1

· · · a~kj−~d`

...
...

. . .
...

a~kj+`−1
a~kj+`−1−~d1

· · · a~kj+`−1−~d`

a~kj+`
a~kj+`−~d1

· · · a~kj+`−~d`




(10)

is singular for ` = m, m + 1, m + 2, . . . .

Proof. Because of (8), the first column [a~kj
, . . . , a~kj+`

]Tr

is a linear combination of the m consecutive columns in
∆

(j)
`+1.

We look at the singularity of ∆
(j)
`+1 for ` < m. In p =

b1x
~d1 +· · ·+b`x

~d` +· · ·+bmx
~dm , the coefficient of the leading

term is non-zero, which means bm 6= 0 and multideg(x
~dm) Â

· · · Â multideg(x
~d`) Â · · · Â multideg(x

~d1). But it is possi-
ble that some b` for 1 ≤ ` < m are zero and these zero terms
can cause ∆

(j)
`+1 to be singular for 1 ≤ ` < m.

Example 1. Let p = x5
1 + x2

2 and a~ı be the coefficients in
the expansion

1+ p + p2 + p3 + · · ·
= a0,0 + a1,0x1 + a0,1x2 + a2,0x

2
1 + a1,1x1x2 + · · · .

Let the enumeration of a~k`
x

~k` follow the monomial order

of 1, x1, x2, x2
1, x1x2, x2

2, . . .. The zero terms in p can
cause zero terms in the expansion of 1 + p + p2 + · · · . The

corresponding matrix ∆
(j)
`+1 can be singular for ` < m. For

example, the matrix

∆
(199)
1+1 =

[
a~k199

a~k199−~d1
a~k200

a~k200−~d1

]
=

[
a~k199

a~k199−(1,0)

a~k200
a~k200−(1,0)

]

=

[
a10,9 a9,9

a9,10 a8,10

]
=

[
0 0
0 0

]
is singular

when ` = 1 < m = 16 and bmx
~dm = b16x

~d16 is the leading
term in p. £

If all b1, . . . , bm are known to be non-zero, or if we consider
the expression that only includes the non-zero terms in p,

p = β1x
~δ1 + · · ·+ β`x

~δ` + · · ·+ βµx
~δµ , β` 6= 0, (11)

for ` = 1, . . . , µ, then we can conclude the non-singularities

for the associated matrices ∆̄
(v)
`+1.

Theorem 4. Suppose x
~δ1 , . . . , x

~δ` , . . . , x
~δµ in (11) follow

a monomial order. Let a~kv
x

~kv , . . . , a~kv+`
x

~kv+` correspond
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to the terms formed by the expansion of these non-zero terms
1 + p + p2 + · · · , then the matrix

∆̄
(v)
`+1 =




a~kv
a~kv−~δ1

· · · a~kv−~δ`

...
...

. . .
...

a~kv+`
a~kv+`−~δ1

· · · a~kv+`−~δ`


 (12)

is non-singular for ` = 0, 1, . . . , µ− 1.
On the other hand, if all possible terms in p are known to

be non-zero, that is b` 6= 0 for ` = 1, . . . , m, then the matrix

∆
(j)
`+1 is non-singular for ` = 1, . . . , m− 1.

Proof. Removing zero terms in (8), we have

a~k = β1a~k−~δ1
+ β2a~k−~δ2

+ · · ·+ βµa~k−~δµ
, (13)

with all β` 6= 0. Apply (13) to all corresponding entries

in ∆̄
(v)
`+1. Each entry is, at least asymptotically, a sum of

µ exponentials. The dimension of matrix (12) reflects the

exponents of these µ exponentials. Therefore ∆̄
(v)
`+1 is non-

singular if its dimension is less than µ + 1.2

Lemma 1. Suppose x
~δ1 , . . . , x

~δ` , . . . , x
~δµ in (11) follow a

monomial order. Let a~kv
x

~kv , . . . , a~kv+`
x

~kv+` correspond to

the terms formed by the expansion of these non-zero terms
1 + p + p2 + · · · , then the matrix

∆̄
(v)
µ+1 =




a~kv
a~kv−~δ1

· · · a~kv−~δµ

...
...

. . .
...

a~kv+µ
a~kv+µ−~δ1

· · · a~kv+µ−~δµ


 (14)

is singular with a rank deficient by 1.
Similarly, if all possible terms in p are known to be non-

zero, that is b` 6= 0 for ` = 1, . . . , m, then the matrix ∆
(j)
m+1

is singular with a rank deficient by 1.

Proof. Apply Theorem 3 to the polynomial p(x1, . . . ,
xn) represented as (11).

Theorem 4 and Lemma 1 can be used to detect the leading

term of p: when ∆̄
(v)
`+1 or ∆

(j)
m+1 first becomes singular, then

` = µ or ` = m.
Nevertheless, both Theorem 4 and Lemma 1 require the

knowledge of the non-zero terms in p(x1, . . . , xn), which is
normally not supplied. By shifting and rotating the repre-
sentation basis, we can always make all possible terms in a
given polynomial non-zero.

2.3 Multivariate: Several Irreducible Factors
In §2.2 we establish the connection between a multivari-

ate irreducible polynomial and the Taylor expansion of its
reciprocal. Now we look at the situation when the given mul-
tivariate polynomial is a product of irreducible polynomials.
Our results in §2.2 can still be applied to each individual
factor.

Consider a polynomial f ∈ C[x1, . . . , xn] whose constant
is normalized to 1 and has the nontrivial factorization

f = 1− p = (1− p1)(1− p2) · · · (1− pt) for t > 1, (15)

2In the univariate case such matrix is comparable to a Han-
kel system whose entries are also sums of exponentials (see,
e.g., [8, Theorem 7.5e] or [13, Theorem 4] in different con-
texts).

in which p, p1, . . . , pt are all assumed to have zero constant
term and 1 − pj is irreducible for all 1 ≤ j ≤ t. We do not
require p1, . . . , pt to be all distinct. In other words, f may
have repeated factors.

Let

Dj =
∏

i6=j

(1− pi) for j = 1, . . . , t.

Consider

1 = R1D1 + · · ·+ RtDt + R, (16)

for some multivariate polynomials R, R1, . . . , Rt ∈ C[x1,
. . . , xn]. Note that for a set of given D1, . . . , Dt, there al-
ways exist (infinitely many combinations of) R, R1, . . . , Rt ∈
C[x1, . . . , xn] such that (16) holds.

Substitute (16) into the numerator of 1/f ,

1

f
=

1

1− p
=

R1D1 + · · ·+ RtDt + R

(1− p1) · · · (1− pt)

=
r1

1− p1
+ · · ·+ rt

1− pt
+

r

(1− p1) · · · (1− pt)
+ q (17)

and rj , pj , r, q ∈ C[x1, . . . , xn]. Under a monomial order, we
require that each term in r is not divisible by the leading
term of (1 − p1) · · · (1 − pt), and for j = 1, . . . , t each term
in rj is not divisible by the leading term of pj .

Since there can be many possible combinations of R, R1,
. . . , Rt in (16), the corresponding r1, . . . , rt, r, q in (17) are
not uniquely determined. However, for j = 1, . . . , t, the
numerators rj and r cannot be zero at the same time. Oth-
erwise, suppose r1 = r = 0, then 1 − p1 is not a pole of
1/f . It is worth mentioning that while r1, . . . , rt, r and q
can vary, only the factors 1− p1, . . . , 1− pt play a vital role
in our convergence analysis.

For each pj in (15), let A
(j)
i = pi

j , then 1/f(x1, . . . , xn) in
(17) can be expanded as

1

f
= r1(1 + p1 + · · · ) + r2(1 + p2 + · · · ) + · · ·

+ rt(1 + pt + · · · ) + r

t∏
j=1

(1 + pj + · · · ) + q

= r1

(
A

(1)
0 + A

(1)
1 + · · ·

)
+ r2

(
A

(2)
0 + A

(2)
1 + · · ·

)

+ · · ·+ rt

(
A

(t)
0 + A

(t)
1 + · · ·

)

+ r

t∏
j=1

(
A

(j)
0 + A

(j)
1 + · · ·

)
+ q =

∑

~ı∈Zn
≥0

a~ıx
~ı. (18)

Recall Theorem 2 in §2.2. When f = 1− p is irreducible,
the Taylor coefficients a~ı are determined by a finite sum of
pM +pM+1+· · ·+pN and both M, N →∞ as multideg(a~ıx

~ı)
increases. Theorem 5 is a similar statement for a multivari-
ate polynomial f when it is a product of irreducible polyno-
mial factors.

Theorem 5. For any M > 0, there exists ~k ∈ Zn
≥0 such

that for any a~ıx
~ı satisfying multideg(a~ıx

~ı) º multideg(a~kx
~k),

38



a~ıx
~ı can be collected from SM,N for an N ∈ Z>0 and

SM,N = r1

(
A

(1)
M + · · ·+ A

(1)
N

)
+ r2

(
A

(2)
M + · · ·+ A

(2)
N

)

+ · · ·+ rt

(
A

(t)
M + · · ·+ A

(t)
N

)

+ r


A

(1)
M1
· · ·A(t)

Mt
+ · · ·+ A

(1)
N1
· · ·A(t)

Nt︸ ︷︷ ︸
TM,N


 , (19)

in which M ≤ M1 + · · ·Mt and N1 + · · ·+ Nt ≤ N .
In other words, if multideg(a~ıx

~ı) follows a monomial or-
der that enumerates every term, then a~ıx

~ı can be collected
from a finite partial sum SM,N and both M, N →∞.

Proof. The polynomial q in (18) does not play a role in
the convergence because it only has a finite number of terms
that can contribute to the Taylor expansion.

For the rest of (18), apply Theorem 2 to each rj(A
(j)
0 +

A
(j)
1 + · · · ) and r

∏t
j=1(A

(j)
0 + A

(j)
1 + · · · ) and sum them

up.

Theorem 5 extends a convergence argument in §2.2 to f
= (1− p1) · · · (1− pt). As multideg(x~ı) increases following
a monomial order, the Taylor coefficient a~ı can be captured
from a finite partial sum SM,N determined by higher powers
and mixed powers of p1, . . . , pt.

We conclude with three possible scenarios on the conver-
gence behavior of SM,N , as M, N → ∞, in relation to the
multivariate Taylor coefficients a~ı. Further details and re-
lated examples are treated in §3.

Scenario 1: Suppose there exists an irreducible factor in
f = (1 − p1) · · · (1 − pt), say 1 − p1, such that p1 domi-
nates SM,N at convergence. Then such polynomial factor
1 − p1 is called the dominating factor. This case is compa-
rable to §2.2 when f itself is an irreducible polynomial. As
multideg(a~ıx

~ı) increases, a~ı reflects the dominating proper-
ties of higher powers of p1.

Scenario 2: If there does not exist a dominating factor in
f = (1−p1) · · · (1−pt), it is still possible that a subsequence
of Taylor coefficients a~ı is dominated by an irreducible fac-
tor, say 1− p1, at convergence. In other words, there exists
a subset K ⊂ Zn

≥0 with cardinality #(K) = ∞ such that if

multideg(x
~k) increases and ~k ∈ K ⊂ Zn

≥0, then the higher
powers of p1 dominate the convergence behavior of {a~k}~k∈K.
We call such factor a partially dominating factor.

Scenario 3: Suppose that each factor 1−pj , for j = 1, . . . , t,
neither dominates nor partially dominates. Instead, a prod-
uct (1− p1) · · · (1− ps) with s ≥ 2 dominates the remaining
factors. Then each of the 1 − pj , j = 1, . . . , s is call a non-
dominating factor.

We point out that the situation described in Scenario 3
is the multivariate analogue of the case |b1| = · · · = |bs|
with s ≥ 2 in the univariate §2.1. The situation described in
Scenario 1 is comparable to the case |b1| > |b2| > · · · > |bt|.
The case described in Scenario 2 is unique to the multivariate
situation.

3. EXTRACTING NUMERICAL FACTORS
We use examples to illustrate how to extract irreducible

factors in the three possible scenarios characterized above.

Our strategy is based on the connection between the irre-
ducible factors and the associated Taylor expansion.

To prepare our discussion, we define a full-termed polyno-
mial.

Full-termed polynomial. Under a monomial order, we
say a polynomial f is full-termed if all its possible terms
with multivariate degrees up to multideg(f) have non-zero
coefficients.

If a polynomial is not full-termed, by shifting and rotating
the representation basis, the same polynomial can be written
as a full-termed polynomial in the new representation. For
example, f(x1, x2) = 1 + x2

1 − x3
2 does not have all terms,

but f can be represented as a full-termed polynomial in the
power basis of

y1 = −1 +
3

2
x1 +

1

2
x2, y2 = 3− 1

2
x1 − 1

2
x2,

which results in a full-termed representation of the same
polynomial

f = − 123 + 77y1 + 227y2 − 14y2
1 − 88y1y2 − 134y2

2

+ y3
1 + 9y2

1y2 + 27y1y
2
2 + 27y3

2 .

For a given polynomial, each factor can be represented
as a full-termed polynomial under a (rotated and shifted)
representation. The purpose of this paper is to demonstrate
that each factor of f can be extracted. Without loss of
generality, in the following discussion we assume that each
factor is already a full-termed polynomial.

3.1 Dominating Factor
The basic case follows Scenario 1 at the end of §2.3. Let

f = (1−p1) · · · (1−pt). As (18) shows, the coefficients a~ı in
the Taylor expansion of 1/f depend on the powers and the
mixed powers of p1, . . . , pt.

To study the convergence behavior, we focus on the situ-
ation when f is a product of two irreducible factors. That
is, f = (1 − p1)(1 − p2), and 1 − p1 is the dominating fac-
tor.3 This happens when the powers of p1 contribute more
than the powers of p2, in each variable, toward the Taylor
coefficient a~ı in the expansion (18) of 1/f . For example, if
f = (1−5.2x1 +4.1x2)(1−x1−1.1x3

2) then 1−5.2x1 +4.1x2

is the dominating factor of f .
Due to the powering effect, the contributions, as well as

the difference of the contributions, from p1 and p2 are ex-
ponential as multideg(a~ıx

~ı) increases. The scale of a~ı is
dominated by the powers of p1 at convergence. Theorem 6
and Lemma 2 further show that at convergence 1 − p1 also
dominates a linear recurrence relation among the associated
Taylor coefficients a~ı.

We use an example to explain this situation.

Example 2. Let f = (1 − x1 − x2) (1 − 2x1 − 3x2), then

3Our discussion can be directly extended to the general case
when 1− p1 is the dominating factor in (1− p1) · · · (1− pt).
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1− (2x1 + 3x2) = 1− p1 is the dominating factor and

1

f
=

1

(1− p1)(1− p2)
=

∑

~ı∈Zn
≥0

a~ıx
~ı

=

r1︷ ︸︸ ︷
1− 2x1

1− (2x1 + 3x2)︸ ︷︷ ︸
p1

+

r2︷ ︸︸ ︷
−1

3
+

2x1

3
1− (x1 + x2)︸ ︷︷ ︸

p2

+

r︷ ︸︸ ︷
1

3
+

5x1

3
− 2x2

1

3
(1− 2x1 − 3x2)︸ ︷︷ ︸

1−p1

(1− x1 − x2)︸ ︷︷ ︸
1−p2

= r1

(
1 + p1 + p2

1 + · · · ) + r2

(
1 + p2 + p2

2 + · · · )

+ r
(
1 + p1 + p2

1 + · · · ) (
1 + p2 + p2

2 + · · · ) . (20)

Now A
(1)
i = pi

1 = (2x1 + 3x2)
i, A

(2)
i = pi

2 = (x1 + x2)
i.

According to Theorem 5, as multideg(a~ıx
~ı) increases, each

a~ı can be collected from

SM,N = r1

(
A

(1)
M + · · ·+ A

(1)
N

)
+ r2

(
A

(2)
M + · · ·A(2)

N

)

+ r
(
A

(1)
M1

A
(2)
M2

+ · · ·+ A
(1)
N1

A
(2)
N2

)

︸ ︷︷ ︸
TM,N

, (21)

M ≤ M1 + M2, N1 + N2 ≤ N , and both M , N → ∞. £

We use χa~ı

(
r1A

(1)
j

)
to extract the contribution from r1A

(1)
j

to a~ı in (20), meaning the coefficient of x~ı in r1A
(1)
j . Since

1 − p1 is the dominating factor, as multideg(x~ı) increases,

the contribution due to r1(A
(1)
M + · · · + A

(1)
N ) dominates a~ı.

In other words,

lim
M,N→∞

χa~ı

(
r2(A

(2)
M + · · ·+ A

(2)
N )

)

χa~ı

(
r1(A

(1)
M + · · ·+ A

(1)
N )

) = 0. (22)

Combining Theorem 5 and (21), we write

a~ı = χa~ı
(SM,N )

= χa~ı

(
r1(A

(1)
M + · · ·+ A

(1)
N )

)

+ χa~ı

(
r2(A

(2)
M + · · ·+ A

(2)
N )

)

+ χa~ı


r (A

(1)
M1

A
(2)
M2

+ · · ·+ A
(1)
N1

A
(2)
N2

)
︸ ︷︷ ︸

TM,N


 (23)

for the associated M, N, as well as M1, M2 and N1, N2.
Theorem 6 is analogous to (7) that holds for a single irre-

ducible factor.

Theorem 6. Under a monomial order, as multideg(a~ıx
~ı)

increases,

lim
M,N→∞

χa~ı
(SM+1,N+1)

χa~ı
(p1 · SM,N )

= 1. (24)

Proof. For a given a~ı, based on Theorem 5 we can always
find M, N such that a~ı = χa~ı

(SM,N ) = χa~ı
(SM+1,N+1).

Recall p1 = A
(1)
1 . We look at p1 · SM,N and SM+1,N+1:

p1 · SM,N = r1

(
A

(1)
M+1 + · · ·+ A

(1)
N+1

)

+ A
(1)
1 r2

(
A

(2)
M + · · ·+ A

(2)
N

)

+ r
(
A

(1)
M1+1A

(2)
M2

+ · · ·+ A
(1)
N1+1A

(2)
N2

)

︸ ︷︷ ︸
A

(1)
1 ·TM,N

,

SM+1,N+1 = r1

(
A

(1)
M+1 + · · ·+ A

(1)
N+1

)

+ r2

(
A

(2)
M+1 + · · ·+ A

(2)
N+1

)

+ r
(
A

(1)
1 · TM,N + A

(2)
M+1 + · · ·+ A

(2)
N+1

)
.

Then combine with the convergence property (22).

Lemma 2. Under a monomial order, as multideg(a~ıx
~ı)

increases,

lim
~ı→∞n

a~ı

b1a~ı−~d1
+ b2a~ı−~d2

+ · · ·+ bma~ı−~dm

= 1, (25)

for the dominating factor 1−p1, where p1 = b1x
~d1 +b2x

~d2 +

· · ·+ bmx
~dm .

Proof. Expand p1 and collect the coefficients correspond-
ing to a~ı in (24).

Similar to (8), Lemma 2 provides a linear relation for the
multivariate Taylor coefficients a~ı at convergence. In other
words, at convergence, the results in §2.2 can be applied to
the dominating factor 1 − p1. Based on such convergence
properties, we build our method.

Algorithm: DomFactor <floating point>

Given a polynomial f(x1, . . . , xn) ∈ C[x1, . . . , xn] such that
f = 1− p = (1− p1) · · · (1− pt) and that 1− p1 is the domi-
nating factor. Compute 1− p1 in floating point arithmetic.

(1) [Expansion.] Obtain required Taylor coefficients a~ı by
expanding 1 + p + p2 + · · · for f = 1− p.

(2) [Rank of ∆
(j)
`+1.] For a sufficiently large j > 0, consider

the rank of matrix ∆
(j)
`+1 in (12) for ` = 0, 1, 2, . . .. The

matrix ∆
(j)
`+1 first becomes singular at ` = m.4

(Within the constraint of finite precision, a larger j
leads to a better convergent result. The choice of j
depends on the desired accuracy and determines the
required computational effort.)

(3) [Compute 1−p1.] Solve the corresponding linear system
(9) for m obtained in Step (2). The solution of this
system approximates the coefficients in the dominating

factor 1− p1 = 1− b1x
~d1 − · · · − bmx

~dm .

We comment on Step (2) of Algorithm DomFactor. Since
f is given, an upper bound on multideg(p1) is multideg(f) =
~dλ. The step of determining m can be achieved by a single

singular value decomposition procedure on matrix ∆
(j)
λ .

4Now 1 − p1 is assumed to have full terms, thus we have

∆̄
(v)
`+1 = ∆

(j)
`+1 for ∆

(j)
`+1 defined in (10).
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As a by-product, we present a semi-irreducibility test for a
given multivariate polynomial in floating point arithmetic.
We call it a semi-irreducibility test because a factorizable
polynomial without a dominating factor can still pass the
semi-irreducibility test.

Algorithm: SemiIrredTest <floating point>

Given a polynomial f(x1, . . . , xn) ∈ C[x1, . . . , xn] such that
f = (1−p1) · · · (1−pt) and there exists a dominating factor
in f . Apparently, if t = 1 then f is irreducible. Determine
whether f is irreducible in floating point arithmetic.

(1) [Expansion.] Obtain required Taylor coefficients a~ı by
expanding 1 + p + p2 + · · · .

(2) [Rank of ∆
(j)
λ .] Pick a sufficiently large j > 0. Check

the rank of ∆
(j)
λ for multideg(f) = ~dλ.

(If matrix ∆
(j)
λ is non-singular and there exist a domi-

nating factor in f , then f irreducible.)

So far we show that for a polynomial f having a domina-
ting factor, we can determine whether f is irreducible and
extract the dominating factor. However, in general a fac-
torizable polynomial may not contain a dominating factor.
This is the focus of our next subsection.

3.2 Partially Dominating Factors
We use an example to explain the behavior of partially

dominating factors and show how to apply our results de-
veloped in §3.1 to this situation. As stated at the beginning
of §3, all partially dominating factors are assumed to be
full-termed.

Example 3. Consider f = (1 − x1 + x2)(1 − 7x1) and the
expansion of its reciprocal

1

f
=

r1

1− (x1 − x2)︸ ︷︷ ︸
p1

+
r2

1− 7x1︸︷︷︸
p2

+
r

(1− x1 + x2)(1− 7x1)︸ ︷︷ ︸
(1−p1)(1−p2)

= r1 (1 + p1 + · · · ) + r2 (1 + p2 + · · · )
+ r (1 + p1 + · · · ) (1 + p2 + · · · )

=
∑

~ı∈Zn
≥0

a~ıx
~ı.

The powering of p2 dominates the exponential growth in the
coefficients of terms that favor the powering of x1, but the
contribution due to the powering of x2 can only come from
p1. Unlike Example 1, there does not exist a dominating
factor in f . Each of the two factors 1− p1 and 1− p2 dom-
inates within a respective subset, K1 or K2 ⊂ {a~ı}~ı∈Zn

≥0
, as

multideg(a~ıx
~ı) increases. £

Let K1 ⊂ Zn
≥0 be such that if multideg(a~κx~κ) follows a

monomial order and ~κ ∈ K1, then the partially dominating
factor 1− p1 dominates a~κ as ~κ increases. Both Theorem 6
and Lemma 2 hold for {a~κ}~κ∈K1 . To recover 1 − p1, Algo-
rithm DomFactor can be carried out for a~κ, with ~κ restricted
in the subset K1. Nevertheless, in general, such a subset is
not given.

Recall that for recovering the dominating factor, Algo-
rithm DomFactor is carried out for Taylor coefficients asso-
ciated with a sufficiently large j > 0. To recover a set of

partially dominating factors, we modify Algorithm DomFac-

tor so that it is performed on a set of j’s.
In order to recover all partially dominating factors, our

strategy is to select a set of j’s such that it intersects with
each subset K` that is associated with a partially dominating
factor. There are many ways to select such j’s. For simplic-
ity, in our discussion we fix an order, the graded reverse lex
order. For reference, here we repeat the definition (see, e.g.,
[3, pp.58-59]).

Definition 1. Let ~di, ~dj ∈ Zn
≥0, ~di >grevlex

~dj if

∣∣∣~di

∣∣∣ =

n∑

k=1

dik >
∣∣∣~dj

∣∣∣ =

n∑

k=1

djk

or |~di| = |~dj | and the rightmost non-zero entry of ~di − ~dj ∈
Zn is negative.

Return to our polynomial f in Example 3. We use J(η)

to denote the collection of all j > 0 such that |~kj | = η in

a~kj
x

~kj . If we pick a sufficiently large η > 0 and proceed

with Algorithm DomFactor for each j ∈ J(η), we encounter

a set of matrices {∆(j)
`+1}j∈J(η).

At ` = 2, a subset of {∆(j)
3 }j∈J(η) are singular matrices,

which reflect the partially dominating factor 1 − p2. Then

at ` = 3, there is another subset {∆(j)
4 }j∈J(η) of singular

matrices reflecting the partially dominating factor 1−p1. For
each of those singular matrices, an approximate polynomial
factor 1−φ can be computed by solving a linear system (9).
Figures 1 and 2 illustrate K2 and K1 in Example 3. Our
computational environment is Maple 12 with Digits = 15.

Figure 1: In Example 3, at m = 2, dotted (i1, i2)
record ‖(1−φ)− (1− p2)‖2 < 10−7 for the multivariate
indices of Taylor coefficients such that i1 + i2 = η =
0, . . . , 30.

Figures 1 and 2 illustrate the results for η = 0, 1, . . . , 30.
But for recovering factors 1−p1 and 1−p2, we only need to
compute for a sufficiently large η, instead of several η such
as in Figures 1 and 2 where η = 0, 1, . . . , 30. We further
remark that in practice, as long as we can determine both
1 − p1 and 1 − p2, for a fixed η we may not even need to

compute ∆
(j)
`+1 for all j ∈ J(η).
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Figure 2: In Example 3, at m = 3, dotted (i1, i2)
record ‖(1−φ)− (1− p1)‖2 < 10−7 for the multivariate
indices of Taylor coefficients such that i1 + i2 = η =
0, . . . , 30.

Performing Algorithm DomFactor on a set J(η) leads to
an algorithm that computes a set of partially dominating
factors.

Algorithm: PartDomFactors <floating point>

Given a polynomial f(x1, . . . , xn) ∈ C[x1, . . . , xn] such that

there does not exist a dominating factor in f = 1− b1x
~d1 −

· · ·−bmx
~dm = (1−p1) · · · (1−pt) and that 1−p1, . . . , 1−ps

are partially dominating factors. Compute 1−p1, . . . , 1−ps

in floating point arithmetic.

(1) [Expansion.] Obtain required Taylor coefficients a~ı by
expanding 1 + p + p2 + · · · .

(2) [Rank of {∆(j)
`+1}j∈J(η).] Pick a sufficiently large η > 0.

For ` = 0, 1, . . . , m, consider the rank of matrix ∆
(j)
`+1

for j ∈ J(η).

Collect those ∆
(j)
`+1 that first become singular (rank

deficient by one) in a subset Q. At the end of this
step, we have a subset Q that collects singular matrices

∆
(j)
`+1 for ` = 0, 1, . . . , m− 1.

(3) [Compute 1 − p1, . . . , 1 − ps.] Solve the corresponding
linear system (9) for each matrix in Q obtained in the
previous step. The solutions of these linear systems
can be grouped to reflect partially dominating factors
1− p1, . . . , 1− ps respectively.

3.3 Dealing with Non-Dominating Factors
We investigate Scenario 3 at the end of §2.3. Given a poly-

nomial f = (1−p1) · · · (1−pt), if 1−p1 is a non-dominating
factor, then there is at least another non-dominating factor,
say, 1− p2. There does not exist a subsequence of the asso-
ciated Taylor coefficients on which either factor contributes
more than the powers of another.

Distinct non-dominating factors.

We use an example to explain our strategy to discover
distinct non-dominating factors 1−p1, . . . , 1−ps of f . That
is, for 1 ≤ i ≤ j ≤ s, whenever i 6= j, then pi 6= pj .

Example 4. Consider f = (1 − x1 − x2)(1 − x1 + x2) and
the expansion of its reciprocal

1

f
=

r1

1− (x1 + x2)︸ ︷︷ ︸
p1

+
r2

1− (x1 − x2)︸ ︷︷ ︸
p2

+
r

(1− x1 − x2)︸ ︷︷ ︸
1−p1

(1− x1 + x2)︸ ︷︷ ︸
1−p2

=
∑

~ı

a~ıx
~ı.

Because p1 and p2 share the same magnitude of coefficients
with respect to each variable, in any Taylor coefficient a~ı the
absolute values of the contributions from powering p1 and
p2 are identical. Therefore none of them dominates in any
subsequence of {a~ı}~ı∈Zn

≥0
.

Suppose we proceed with Algorithm PartDomFactors on
the associated set of Taylor coefficients {a~ı}~ı∈Zn

≥0
. Since nei-

ther 1−p1 nor 1−p2 dominates, we reach singular matrices

only at ∆
(j)
7 . But then the corresponding solution can only

recover the product of (1−p1)(1−p2) in its expanded form,
instead of the individual factors, 1− p1 and 1− p2.

By shifting and rotating the representation basis, we can
either turn these non-dominating factors into partially do-
minating factors, or one of them into a dominating factor,
in the new representation basis.

Let y1 = −3 + x1 + x2, y2 = 18− 2x1− 4x2 and represent
f in the basis of y1, y2, then both 1− p1 and 1− p2 become
partially dominating factors in f ,

1

f
=

θ1

1− (3 + y1)︸ ︷︷ ︸
p1 in y1,y2

+
θ2

1− (−9 + 3y1 + y2)︸ ︷︷ ︸
p2 in y1,y2

+
θ

(1− p1)(1− p2)

=
θ̄1

1− (−0.5y1)
+

θ̄2

1− (0.3y1 + 0.1y2)

+
θ̄

(1− p1)(1− p2)
.

If we represent f with respect to the basis of z1 = −3+x1+x2

and z2 = 10− 2x1 − 4x2 then

1

f
=

ϑ1

1− (3 + z1)︸ ︷︷ ︸
p1 in z1,z2

+
ϑ2

1− (−1 + 3z1 + z2)︸ ︷︷ ︸
p2 in z1,z2

+
ϑ

(1− p1)(1− p2)

=
ϑ̄1

1− (−0.5z1)
+

ϑ̄2

1− (1.5z1 + 0.5z2)

+
ϑ̄

(1− p1)(1− p2)

gives a representation in which 1− p2 becomes the domina-
ting factor of f . £

If there are non-dominating factors in f that are identical,
then f has repeated factors. Such repeated factors remain
identical in all bases and can not be separated by a change
of basis.

Identical non-dominating factors.

Let f = (1 − p1) · · · (1 − pt). Suppose 1 − p1, . . . , 1 − ps

are non-dominating factors and p1 = · · · = ps for 1 ≤ s ≤ t.
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If we perform Algorithm PartDomFactors on the asso-
ciated Taylor coefficients {a~ı}~ı∈Zn

≥0
, we can only recover

the product of (1 − p1) · · · (1 − ps) = (1 − p1)
s in its ex-

panded form. Unlike the distinct non-dominating factors,
these identical factors can not be separated by changing the
representation basis.

Let g = (1−p1)
s. By reformulating the factoring of g into

another factorization problem, we can recover the power s
and the irreducible factor 1− p1.

Dully substituting variable xi by yi in g, we obtain another
multivariate polynomial ḡ ∈ C[y1, . . . , yn] such that if yi =
xi, then ḡ = g. Now we have

g = (1− p1)
s, ḡ = (1− p̄1)

s,

in which g, p1 ∈ C[x1, . . . , xn] and ḡ, p̄1 ∈ C[y1, . . . , yn].
Define another polynomial F ∈ C[x1, . . . , xn, y1, . . . , yn]

such that

F =g − ḡ = (1− p1)
s − (1− p̄1)

s. (26)

If s = 1, then F is an irreducible polynomial in C[x1, . . . ,
xn, y1, . . . , yn]. This is because p̄1 − p1 is irreducible in
(C[y1, . . . , yn])[x1, . . . , xn].

If s ≥ 2, then F can be factorized in C[x1, . . . , xn, y1,
. . . , yn]:

F = g − ḡ = (1− p1)
s − (1− p̄1)

s

=
(
(1− p1)− (1− p̄1)

)
(

s−1∑
j=0

(1− p1)
j(1− p̄1)

s−1−j

)

=
(
p̄1 − p1

)
(

s−1∑
j=0

(1− p1)
j(1− p̄1)

s−1−j

)
. (27)

By considering the factorization of F over C[x1, . . . , xn,
y1, . . . , yn], we reformulate the problem of factorizing a mul-
tiple power of a repeated factor into the factorization of
another square-free polynomial. If F is irreducible, we con-
clude that g is irreducible. If we can factorize F , then g is a
multiple power of an irreducible polynomial 1−p1. From the
factorization of F in (27), we can determine the irreducible
factor 1 − p1. Once both g and p1 are known, the multiple
power of s is determined by multideg(g) = s ·multideg(p1).

Algorithm: PowerFactors <floating point>

Given a polynomial g(x1, . . . , xn) ∈ C[x1, . . . , xn] in its ex-
panded form such that g = (1−p1)

s and 1−p1 is irreducible.
Determine whether s = 1; if not, determine s and 1− p1 in
floating point arithmetic.

(1) [Factorize F .] Define F ∈ C[x1, . . . , xn, y1, . . . , yn] as in
(26). Note that the constant of F is zero. In order to
factorize F from the associated Taylor expansion, we
need to introduce a constant term. So we form F̄ by
representing F in a shifted basis x̄1 = x1+σ1, . . . , x̄n =
xn + σn, ȳ1 = y1 + ς1, . . . , ȳn = yn + ςn. Perform Algo-
rithm PartDomFactors to factorize F̄ .

(2) [Determine s and 1 − p1.] If F̄ , hence F , cannot be
factorized, then s = 1 and g = 1 − p1 is irreducible.
Otherwise, from the factorization 1 − p1 can be de-
termined. Once 1 − p1 is obtained, s is computed as
multideg(g) = s ·multideg(p1).

4. COMPLETE FACTORIZATION AND
IRREDUCIBILITY TESTING

Our method to extract one or more polynomial factors
from a given polynomial f assumes that f is the numeri-
cal representation of either a factorizable or an irreducible
polynomial. A different problem is that of so-called approx-
imate factorization, where one returns the factorization of a
factorizable polynomial that is closest to f in some sense, re-
gardless whether f is numerically irreducible or not. For sig-
nificant noise it remains to be answered whether our method
can be adapted for this purpose.

As far as computational effort is concerned, our method
depends on the size of the extracted factors rather than on
the size of the input polynomial.

A multivariate polynomial is a product of a finite number
of irreducible factors. As each irreducible factor can be ex-
tracted, our approach can lead to the complete factorization
of multivariate polynomials and, as a by-product, an irre-
ducibility test. Both of them belong to our current research
and are commented below.

Toward complete factorization.

For a given multivariate polynomial f = (1 − p1) · · · (1 −
pt), a subset of its irreducible factors can be extracted from
the Taylor expansion of 1/f . Such extracted factors, 1 −
p1, . . . , 1 − ps, 1 ≤ s ≤ t, can be the dominating factor,
partially dominating factors, or non-dominating factors.

Let h1 = (1− p1) · · · (1− ps). We continue to extract irre-
ducible factors from f1 = f/h1. Since there are only finitely
many irreducible factors in f , all irreducible factors can be
extracted after repeating this procedure. An approximate
polynomial division can be found in [15]. But perturbation
can be introduced after each approximate polynomial divi-
sion.

On the other hand, by shifting and rotating the basis in
the polynomial representation, the dominating, partially do-
minating, or non-dominating factors to be extracted can
change type. If each time different irreducible factors are
extracted from the given polynomial f , then eventually all
irreducible factors are extracted. Compared to polynomial
division, changing the basis does not perturb the input poly-
nomial. However, in order to achieve complete factorization,
an effective strategy for changing basis is required such that
the extraction of all irreducible factors can be guaranteed.

Toward an irreducibility test.

A factorizable polynomial without a dominating factor
can pass Algorithm SemiIrredTest. By performing Algo-
rithm SemiIrredTest on a set of j’s that intersects with
subsets associated with partially dominating factors, a poly-
nomial with partially dominating factors can be captured.

Still, a factorizable polynomial with non-dominating fac-
tors can pass the above modified test. Following the dis-
cussion in §3.3, the changing of basis in the polynomial rep-
resentation and Algorithm PowerFactors for factoring re-
peated factors provide us with tools to design an absolute
irreducibility test for complex multivariate polynomials in
floating point arithmetic.
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