
Journal of Computational and Applied Mathematics 413 (2022) 114346

I
A
e

t
P
a
b
m

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Validated analysis ofmodulated signals: From de Prony to
Padé and beyond
Annie Cuyt a,c, Yuan Hou a, Wen-shin Lee b,∗

a Computational & Engineering Mathematics (CEMath), Universiteit Antwerpen, Middelheimlaan 1, B-2020 Antwerpen, Belgium
b Division of Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, Scotland, UK
c College of Mathematics and Statistics, Shenzhen University, Shenzhen, Guangdong 518060, China

a r t i c l e i n f o

Article history:
Received 9 July 2021
Received in revised form 24 March 2022

Remembering Luc Wuytack who introduced
me to the concept of Padé approximation.

MSC:
41A21
42A15
65D05
65T40
65Z05

Keywords:
Exponential analysis
Modulation
Validation
Prony polynomial
Padé approximant
Froissart doublet

a b s t r a c t

The spectral analysis of modulated signals has attracted quite some research, mainly
because of the fact that Fourier methods are not particularly suitable. Among the
challenges, we mention the separation of close components that differ significantly
in magnitude, the limitation of the sampling duration, the probable ill-conditioning of
certain structured matrices.

We show how a validated exponential analysis add-on, for use with any standard
exponential analysis method, offers a lot of advantages in the context of these challenges.
The add-on uses an alias-free decimation technique and essentially combines the basics
of de Prony’s method for exponential fitting with the theory of Padé approximation
theory.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

When dealing with non-stationary signals, the widely used efficient and robust Fourier transform is not very useful.
ts frequency resolution depends on the sampling duration and the latter is very limited when the signal is not stationary.
lso the spectral leakage of the Fourier transform complicates the distinction of multiple components close to each other,
specially if the components differ significantly in magnitude. Such situation often occurs in modulated signals.
To overcome these drawbacks, several other algorithms have been proposed, among which various wavelet-based

ransforms, neural network approaches, genetic algorithms, extensions of Kalman filtering, and methods based on de
rony’s computational scheme. The latter methods are often confronted with possibly ill-conditioned Hankel matrices and
re usually quite sensitive to noise. Also, distinguishing multiple components close to one another in a narrow frequency
and remains difficult because of the necessity to work with large matrices. We propose a validated version of de Prony’s
ethod [1,2] by combining it with results from Padé approximation theory [3–5], generalized eigenvalue algorithms [6],
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observations by the theoretical physicist Froissart [7,8] and decimation as presented in [9,10] to recondition and divide-
and-conquer larger sized problems. We thus bring together mathematical research results from 4 different centuries, from
the end of the 18-th century to the beginning of the 21-st century.

The basic steps used in recent versions of de Prony’s method, when applied to non-modulated signals, are summarized
n Section 2. In Section 3 we deal with various types of modulation and discuss how to adapt the method presented in
ection 2. So far for the mathematics underlying modulation.
In Section 4 we summarize a recent validated implementation of de Prony’s method for use with non-modulated

ignals. At the same time we develop the adaptations required to deal with modulated signals. The new results are
llustrated in Section 5, on a number of practical examples from the scientific literature.

. Standard exponential analysis

Exponential analysis in signal processing is an inverse problem. Let the signal f (t) be given by

f (t) =

n∑
j=1

αj exp(φjt), αj, φj ∈ C. (1)

Already in 1795, de Prony [1] proved that the values of the coefficients αj, j = 1, . . . , n and the mutually distinct
exponents φj, j = 1, . . . , n can be recovered from a mere 2n equidistant samples if the sparsity n is known. Much later, the
connection to Padé approximation was pointed out in [11] and the problem statement was reformulated as a structured
generalized eigenvalue problem in [6]. For the sake of completeness we summarize these connections, at the same time
indicating some practical aspects concerning the numerical computation of the unknowns φj, αj, j = 1, . . . , n. How n can
be determined, is discussed further on. It is usually considered a hard problem, while an incorrect estimate of the sparsity
greatly influences the computed results.

Let ℑ(·) denote the imaginary part of a complex number. Sometimes the coefficients αj are referred to as the complex
amplitudes (the real amplitudes equal |αj|) and the φj as the complex frequencies (the real frequencies equal ℑ(φj)). In
he following we choose a real ∆ ̸= 0 such that |ℑ(φj)| < π/|∆|, in order to comply with [12,13]. The value ∆ denotes
he sampling step in the equidistant sampling scheme

fk := f (k∆) =

n∑
j=1

αj exp(φjk∆) =

n∑
j=1

αjΦ
k
j , Φj = exp(φj∆). (2)

e start with the generalized eigenvalue reformulation of the exponential analysis problem. With the samples fk, k =

, . . . , 2n − 1, . . . we fill the Hankel matrices

H (m)
n :=

(
fm+i+j−2

)n
i,j=1 =

⎛⎜⎜⎝
fm fm+1 . . . fm+n−1

fm+1 fm+2 . . . fm+n
...

... . .
. ...

fm+n−1 fm+n . . . fm+2n−2

⎞⎟⎟⎠ , m ≥ 0.

From the expression (2) for the samples fk we immediately find that H (m)
n can be factored as

H (m)
n = VnDαDm

ΦV T
n , (3)

where Vn is the Vandermonde matrix

Vn =
(
Φ i−1

j

)n
i,j=1

and Dα and DΦ are diagonal matrices respectively filled with the vectors (α1, . . . , αn) and (Φ1, . . . , Φn) on the diagonal.
So the Φj, j = 1, . . . , n can be found as the generalized eigenvalues λj, j = 1, . . . , n of the problem [6]

H (1)
n vj = λjH (0)

n vj, (4)

where the vj, j = 1, . . . , n are the right generalized eigenvectors. From the generalized eigenvalues Φj = exp(φj∆) the
complex values φj can be extracted uniquely because |ℑ(φj)∆| < π . After recovering the Φj, the αj can be computed from
the Vandermonde structured linear system

n∑
j=1

αjΦ
k
j = fk, k = 0, . . . , 2n − 1, . . . (5)

In a noisefree mathematical context, only n equations of (5) are linearly independent because of the relationship (4)
between the Φj. How to reliably proceed in a noisy context is analyzed in great detail in [10].

Instead of filling Hankel matrices with the samples fk, we can also construct a formal power series expansion

F (z) =

∞∑
fkzk.
k=0

2
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The series expansion F (z) is related to the z-transform Z(f ) of the sequence (fk)k∈N by Z(f ) = F (1/z). Using the expression
2) for the fk and under the assumption that the Φj are mutually distinct, it is not difficult to see that [11]

F (z) =

∞∑
k=0

⎛⎝ n∑
j=1

αjΦ
k
j

⎞⎠ zk =

n∑
j=1

αj

(
∞∑
k=0

Φk
j z

k

)
=

n∑
j=1

αj

1 − Φjz
. (6)

o the function F (z) is itself a rational function of degree n − 1 in the numerator and n in the denominator. The
onsistency property of Padé approximants guarantees that a rational function like F (z) is reconstructed from its formal
eries expansion by its [n− 1/n]F Padé approximant of degree n− 1 in the numerator and n in the denominator, thereby
eeding only the series coefficients f0, . . . , f2n−1. So we can also obtain the Φj from the Padé denominator

n∏
j=1

(1 − Φjz) = bnzn + · · · + b1z + 1, (7)

s inverses of the poles of [n − 1/n]F , and the αj from the partial fraction decomposition of [n − 1/n]F in (6). Let us
econnect to de Prony’s original algorithm. The reverse of the Padé denominator, namely the polynomial

n∏
j=1

(z − Φj) = zn + b1zn−1
+ · · · + bn, (8)

s called the Prony polynomial. Its coefficients are obtained from a Hankel structured system [2, pp. 378–382], which is a
ere rewrite of the Toeplitz linear system that delivers the Padé denominator coefficients, namely⎛⎜⎝ fn−1 · · · f0

...
. . .

...

f2n−2 · · · fn−1

⎞⎟⎠
⎛⎜⎝b1

...

bn

⎞⎟⎠ = H (0)
n

⎛⎜⎝bn
...

b1

⎞⎟⎠ = −

⎛⎜⎝ fn
...

f2n−1

⎞⎟⎠ . (9)

Now what can be said about n? Merely using some known theorems, its value can be nailed down quite precisely,
that is, again in an exact noisefree context. Let |H (m)

n | denote detH (m)
n . We read in [14] and [15] that on the one hand, for

N < n and m ≥ 0, |H (m)
N | is only accidentally zero, depending on the value of ∆, while on the other hand, for N > n and

m ≥ 0, |H (m)
N | is always zero, irrespective of the value of ∆. Most importantly, for N = n,m ≥ 0 and mutually distinct

Φj, |H
(m)
n | ̸= 0. In order to inspect |H (m)

N | for N > n, additional samples up to fm+2N−2 need to be provided, in other words
at least the additional sample f2n (in case m = 0 and N = n + 1). A nice discussion, based on algebraic arguments, is
presented in [16].

In the case where the fk, k = 0, 1, 2, . . . are perturbed with noise,

F (z) + ϵ(z) =

∞∑
k=0

(fk + ϵk)zk,

we need to proceed differently to detect the sparsity n. The theorem of Nuttall–Pommerenke states that if F (z) + ϵ(z) is
analytic throughout the complex plane, except for a countable number of poles [4] and essential singularities [5], then
its sequence of Padé approximants {[η − 1/η]F (z)}η∈N of degree η − 1 over η converges to F (z) + ϵ(z) in measure on
compact sets. This means that for sufficiently large η the measure of the set where the convergence is disrupted, so
where |F (z) + ϵ(z) − [η − 1/η]F (z)| ≥ τ for some given threshold τ , tends to zero as η tends to infinity.

In our case, pointwise convergence is disrupted by η − n unwanted pole-zero combinations of the Padé approximants
that are added to the n true poles and n − 1 true zeros of F (z), the pole and zero in the pair almost canceling each
other locally [8,17]. These pole-zero combinations are also referred to as Froissart doublets. In practice, these Froissart
doublets offer a way to separate the noise ϵ(z) from the underlying F (z). Because of the Padé convergence theorem, the
true poles can be identified as stable poles in successive [η − 1/η]F (z), while the noisy poles are distinguished by their
instability. When increasing η we compute a larger set of poles, of which the noisy ones are moving around [8,18] with
every different realization of the noise ϵ(z). The true Φj are forming stable clusters while the ones related to noise are
scattered.

This characteristic enables to develop a validated algorithm [10] for the identification of the unknown model
parameters in (1). Decimation by a factor r of a sufficiently large number N ≥ 2n of samples fk, allows to compute
⌊N/2r⌋ = η > n generalized eigenvalues per decimated subset and inspect the stable poles and Froissart doublets of the
r × η joint results. In a nutshell:

• the sparsity n equals the number of identified clusters of Φj,
• ideally each cluster contains (close to) r elements,
• Φ1, . . . , Φn are the centers of gravity of these clusters,
• α , . . . , α satisfy the N × n Vandermonde system (5).
1 n

3
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The details of the technique are recapped in Section 4.1, while an adaptation for certain modulated signals is given in
ection 4.2.

. Analysis of modulated signals

Exponential analysis might sound remote, but it touches our lives in many surprising ways, even if most people are
naware of just how important it is. For example, a substantial amount of effort in the field of signal processing is
ssentially dedicated to the analysis of multi-exponential functions of which the exponents φj are complex. The analysis

of exponential functions whose exponents are very near each other is directly linked to super-resolution imaging. As for
multi-exponential functions with real exponents φj, they are used to portray relaxation, chemical reactions, radioactivity,
heat transfer, fluid dynamics.

Besides signals which follow an exponential model with constant φj and αj, several applications rely on a signal model
where the parameters are themselves time-dependent. In this section we treat signals with modulated amplitudes αj(t)
where the modulation can take different forms, in particular polynomial and trigonometric expressions for αj(t), and we
discuss some forms of frequency modulation. In Section 5 we list a number of engineering applications in which modulated
signals appear naturally.

3.1. Polynomial amplitude modulation

Let the signal be given by

f (t) =

n∑
j=1

⎡⎣αj0 +

µj−1∑
ℓ=1

αjℓ

(
ℓ + t/∆

ℓ

)⎤⎦ exp(φjt), αjℓ, φj ∈ C. (10)

As above, we sample (10) at the equidistant points k∆ to obtain fk, k = 0, 1, 2, . . . Now

fk :=

n∑
j=1

⎡⎣µj−1∑
ℓ=0

αjℓ

(
ℓ + k

ℓ

)⎤⎦Φk
j . (11)

It was proved in [19] that the function

F (z) =

∞∑
k=0

fkzk =

n∑
j=1

µj−1∑
ℓ=0

αjℓ

(1 − Φjz)ℓ+1

is a rational function of degree n − 1 in the numerator and degree n in the denominator where n = µ1 + · · · + µn and
ence can be reconstructed by the computation of the Padé approximant [n− 1/n]F from its series development. Clearly,

modulation of the amplitudes increases the denominator degree of the Padé approximant. In the case of polynomial
modulation, it does so by raising the multiplicity of the Padé pole 1/Φj to µj, which is one more than the degree of the
th polynomial amplitude.

Also, with modulation as in (10) or (13), the parameters φj, j = 1, . . . , n are identified from (8) rather than (4). The
eason is that in the case of multiple poles, factorization (3) of H (m)

n , which leads to the generalized eigenvalue algorithm,
oes not hold. The Padé denominator (7) or its reverse, the Prony polynomial, can be computed using (9). With roots of
igher multiplicity the Vandermonde system (5) needs to be replaced by a confluent version for the computation of the
j. We come back on this issue in Section 4.2.

.2. Trigonometric amplitude modulation

In several applications the amplitude is modulated periodically. Let the signal be given by

f (t) =

n∑
j=1

⎡⎣αj0 +

µj−1∑
ℓ=1

αjℓ exp(φjℓt)

⎤⎦ exp(φj0t), αjℓ, φjℓ ∈ C. (12)

Using the results of Section 2, it is easy to see that with

Φjℓ = exp(φjℓ∆), j = 1, . . . , n, ℓ = 0, . . . , µj − 1,

the exponential model (12) translates to the Padé approximation problem of denominator degree n = µ1 + · · · + µn and
numerator degree n − 1 of the rational function

F (z) =

∞∑
fkzk =

n∑⎡⎣ αj0

1 − Φj0z
+

µj−1∑ αjℓ

1 − Φj0Φjℓz

⎤⎦ .
k=0 j=1 ℓ=1

4
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Again modulation of the amplitude increases the denominator degree of the Padé approximant, from n to µ1 + · · · + µn,
here for 1 ≤ j ≤ n, µj − 1 of these terms modulate the amplitude αj0.

3.3. Related amplitude modulation

In [20,21] several variations of exponential analysis are presented, using among others

• certain orthogonal polynomials,
• different trigonometric building functions,
• the sampling function sinc,
• the Gaussian distribution function.

Similar variations can be considered in the context of modulation. For instance, a sinc modulated amplitude, as in the
signal

f (t) =

n∑
j=1

[
αj + αj1sinc(φj1t)

]
exp(φjt) (13)

can be dealt with as follows. When sampling

gk := (k∆)fk =

n∑
j=1

[
αjk∆ + (αj1/φj1) sin(φj1k∆)

]
exp(φjk∆), k = 0, 1, 2, . . .

the results of the previous subsections can be combined. The formal series with coefficients gk, k = 0, 1, 2, . . . is the series
development of the sum of the partial fraction decompositions

G(z) =

n∑
j=1

(
−αj∆

1 − Φjz
+

αj∆

(1 − Φjz)2

)
+

n∑
j=1

(
αj1/(2φj1)
1 − ΦjΦj1z

+
−αj1/(2φj1)
1 + ΦjΦj1z

)
o, every sinc modulated term with exponent φj translates to four poles in the Padé approximation problem, namely a

double pole at 1/Φj and two adjacent poles at ±(1/Φj1)(1/Φj).

.4. Frequency modulation

We consider some trigonometric frequency modulation, as in

f (t) =

n∑
j=1

αj exp
(
i(φjt + αj1 sin(φj1t))

)
, αj, φj ∈ C, αj1, φj1 ∈ R. (14)

Here φj is often called the carrier frequency and φj1 the modulation frequency. Making use of the Jacobi–Anger expansion

exp(iα sinφ) =

+∞∑
ℓ=−∞

Jℓ(α) exp(iℓφ),

we can write

f (t) =

n∑
j=1

αj

[
+∞∑

ℓ=−∞

Jℓ(αj1) exp
(
i(φj + ℓφj1)t

)]
,

where Jℓ(·) denotes the Bessel function of the first kind of integer order ℓ. These infinite sums are of course terminated
when the terms become negligible, and thus

f (t) ≈

n∑
j=1

αj

⎡⎣ +µj∑
ℓ=−µj

Jℓ(αj1) exp
(
i(φj + ℓφj1)t

)⎤⎦ .

In the same way as in Section 2, the right hand side can be associated with the rational function

F (z) =

n∑
j=1

+µj∑
ℓ=−µ

αjJℓ(αj1)
1 − ΦjΦ

ℓ
j1z

, Φj = exp(iφj∆), Φj1 = exp(iφj1∆)

j

5
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of degree n = n + 2(µ1 + · · · + µn) in the denominator and degree n − 1 in the numerator. The values αj and αj1 can be
eparated by using

2ℓ
αj1

=
Jℓ−1(αj1)
Jℓ(αj1)

+
Jℓ+1(αj1)
Jℓ(αj1)

, ℓ = −µj + 1, . . . , µj − 1.

hen one of the φj1, j = 1, . . . , n equals zero, then µj = 0 for that φj1. We further assume that all poles are simple
nd distinct and can be computed using the generalized eigenvalue formulation (4). In practice, the collision of sideband
lements ΦjΦ

ℓ
j1 for various j and ℓ, is avoided by engineers [22].

When dealing with distinct ΦjΦ
ℓ
j1, j = 1, . . . , n, ℓ = −µj, . . . , µj, it is straightforward to group the terms per value of j,

n other words to reconstruct model (14) from F (z), by repeating the following steps until the n arithmetical progressions
re separated:

(1) Organize the frequency estimates in ascending order and calculate the differences of all frequencies with respect
to the first one.

(2) Extract the first one and the frequencies which are at equidistant intervals of the first one and repeat the steps till
all are separated.

. Validation through decimation

.1. Validated exponential analysis

When replacing ∆ by a multiple ∆(r) := r∆ and thus sampling at k∆(r) = kr∆, we fill the Hankel matrices H (m)
n with

he samples fkr instead of the samples fk, k = m, . . . ,m + 2n − 1. To avoid confusion we denote the latter ones by

H (m)
n (r) :=

⎛⎜⎝ fmr . . . f(m+n−1)r
... . .

. ...

f(m+n−1)r . . . f(m+2n−2)r

⎞⎟⎠ .

So the eigenvalues we retrieve from (4) are not λj = Φj, but

λj(r) = λr
j = Φr

j , j = 1, . . . , n.

From λr
j = exp(rφj∆) the imaginary part of φj cannot be retrieved uniquely anymore, because now

|ℑ(rφj∆)| < rπ.

So aliasing may have kicked in: because of the periodicity of the function exp(irℑ(φj)∆) a total of r values in the 2rπ wide
nterval (−rπ, rπ ) can be identified as plausible values for φj. Note that when the original λj are clustered, the powered
r
j may be distributed quite differently and unclustered. Such a relocation of the generalized eigenvalues can seriously
mprove the conditioning of the Hankel matrices involved [9].

Remains to investigate how to solve the aliasing problem in the imaginary parts ℑ(φj). This aliasing can be fixed at the
xpense of a small number of additional samples. To fix the aliasing, we add n samples to the f0, fr , . . . , f(2n−1)r , namely
t the shifted points kr∆ + ρ∆ for k = h, . . . , h + n − 1 with 0 ≤ h ≤ n. Easy choices for ρ and r are small mutually
rime integer numbers. With the additional samples we proceed as follows.
From the samples f0, fr , . . . , f(2n−1)r we compute the generalized eigenvalues λr

j = exp(φjr∆) = Φr
j and the coefficients

j going with Φr
j from the linear system

f (kr∆) =

n∑
j=1

αj exp(φjkr∆) =

n∑
j=1

αjΦ
kr
j , k = 0, . . . , 2n − 1. (15)

o we know which coefficient αj goes with which generalized eigenvalue Φr
j , but we just cannot identify the correct ℑ(φj)

rom Φr
j . The samples at the additional points satisfy

f (kr∆ + ρ∆) =

n∑
j=1

αj exp
(
φj(kr + ρ)∆

)
=

n∑
j=1

(αjΦ
ρ

j )Φ
kr
j , k = h, . . . , h + n − 1,

(16)

hich can be interpreted as a linear system with the same coefficient matrix as (15), but now with a new left hand
ide and new unknowns α Φ

ρ
, . . . , α Φ

ρ instead of α , . . . , α . And again we can associate each computed α Φ
ρ with
1 1 n n 1 n j j

6



A. Cuyt, Y. Hou and W.-s. Lee Journal of Computational and Applied Mathematics 413 (2022) 114346

f
t
i

c

F

the proper generalized eigenvalue Φr
j . Then by dividing the αjΦ

ρ

j computed from (16) by the αj computed from (15),
or j = 1, . . . , n, we obtain from Φ

ρ

j a second set of ρ plausible values for ℑ(φj) in the interval (−ρπ, ρπ ). Because of
he fact that we choose ρ and r relatively prime, the two sets of plausible values for ℑ(φj) have only one value in their
ntersection [9]. Thus the aliasing problem is solved.

The idea to use or bring in samples at shifted sampling locations can be repeated. Instead of only shifting over ρ, we
an choose to repeat the shift over 2ρ, 3ρ, . . . , (M − 1)ρ:

f (kr∆ + mρ∆) =

n∑
j=1

αj exp
(
φj(kr + mρ)∆

)
=

n∑
j=1

(αjΦ
mρ

j )Φkr
j , k = h, . . . , h + n − 1, m = 1, . . . ,M − 1.

rom each shift over mρ we compute the coefficients αjΦ
mρ

j as in (16), and so for each j we can set up the sequence of
values

αj, αjΦ
ρ

j , . . . , αjΦ
mρ

j , . . . , αjΦ
(M−1)ρ
j .

With j fixed, these values by themselves follow a one-term exponential model. Therefore we can use a Prony-like method
on this sequence of coefficients to extract Φ

ρ

j rather than obtain only one estimate for it from (16). This further stabilizes
the estimation of Φ

ρ

j .
The decimation technique can nicely be combined with the Padé view. For a fixed integer r > 0 the full sequence of

samples f0, f1, f2, . . . can be divided into r downsampled subsequences

f0, fr , f2r , . . .

f1, fr+1, f2r+1, . . .

...

fr−1, f2r−1, f3r−1, . . .

where the sequence starting with f1 can be used as a shift over ρ = 1 of the downsampled sequence starting with f0
and so on. Since we only need n samples at shifted points (and not 2n), the sequence containing fr can be used as the
shift over ρ = 1 of the last subsequence. And of course, shifted sample sequences fkr+ρ for other values of ρ can also be
regarded as long as gcd(r, ρ) = 1.

In this way we obtain r smaller problems of the form (15) instead of just one large problem of the form (2), thereby
improving the conditioning of the matrices involved. In each of these, assuming that we overshoot the true number of
components n in (15) and (16) by η > n, the true parameters φj in (1) appear as n stable poles in the Padé approximant
while the η − n spurious noisy poles behave in an unstable way. In fact, each downsampled sequence can be seen as a
different noise realization while the underlying function f (t) remains the same. So the generalized eigenvalues related
to the signal f (t) cluster near the true Φr

j , and similarly for the Φ
ρ

j associated with the true Φr
j , while the other values

belong to independent noise realizations and do not form clusters anywhere [23,24].
The cluster analysis method used in the examples below is DBSCAN [25]. Since the cluster radii may vary, we typically

perform at least two runs of DBSCAN with different parameter settings. In a first run we retrieve the clusters with higher
density, while subsequent runs allow to detect the less dense clusters of generalized eigenvalues [10]. We emphasize that
the above technique can be combined with any implementation to solve problem (1), or rather (15) and (16), popular
methods being described in [6,26–28]. The combination of one of these methods with the validation add-on described
above, has been termed VEXPA, an acronym for Validated EXPonential Analysis [10]. In the sequel we use the matrix
pencil method [6] as the method of choice underlying VEXPA. When including a rank reduction step in matrix pencil, we
refer to it as MP-SVD. Its use without rank reduction is simply termed MP.

4.2. Adaptation for modulated signals

When dealing with non-distinct frequencies in the exponential analysis, which translate to poles of higher multiplicity
in the Padé approximation problem, as in certain modulated signals, then (5) needs to be replaced by a confluent
Vandermonde system, both in the standard as well as in the decimated version (15). We immediately write down the
version for a signal decimated by a factor r . Putting r = 1 results in the non-decimated case. In (11) the coefficients α
jℓ

7
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are obtained from⎛⎜⎜⎜⎝
1 1 · · · 1 · · · 1 · · · 1

Φr
1

(1+r
1

)
Φr

1 · · ·
(
µ1−1+r
µ1−1

)
Φr

1 · · · Φr
n · · ·

(
µn−1+r
µn−1

)
Φr

n
...

...
...

...
...

Φ
(N−1)r
1

(1+(N−1)r
1

)
Φ

(N−1)r
1 · · ·

(
µ1−1+(N−1)r

µ1−1

)
Φ

(N−1)r
1 · · · Φ

(N−1)r
n · · ·

(
µn−1+(N−1)r

µn−1

)
Φ

(N−1)r
n

⎞⎟⎟⎟⎠

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1,0
...

α1,µ1−1
...

αn,0
...

αn,µn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎝
f0
fr
...

f (N − 1)r

⎞⎟⎟⎠ . (17)

For the computation of the altered coefficients from the shifted samples in (16), each combinatorial term in (17) containing
a multiple kr, k = 1, . . . ,N − 1 sees the kr replaced by kr + ρ, while the first row of the matrix in (17) becomes

1
(
1 + ρ

1

)
· · ·

(
µ1 − 1 + ρ

µ1 − 1

)
· · · 1 · · ·

(
µn − 1 + ρ

µn − 1

)
.

The vector of unknowns is now
(
α1,0Φ

ρ

1 , · · · , α1,µ1−1Φ
ρ

1 , . . . , αn,0Φ
ρ
n , . . . , αn,µn−1Φ

ρ
n
)T and the right hand side(

fρ, fr+ρ, . . . , f(N−1)r+ρ

)T . Again dividing the solution(
α1,0Φ

ρ

1 , · · · , α1,µ1−1Φ
ρ

1 , . . . , αn,0Φ
ρ
n , . . . , αn,µn−1Φ

ρ
n

)T
componentwise by

(
α1,0, . . . , α1,µ1−1, . . . , αn,0, . . . , αn,µn−1

)
gives us estimates for the Φ

ρ

j , j = 1, . . . , n. From here the
validation add-on can proceed as explained above.

5. Examples and numerical illustration

We list some typical computational science and engineering situations in which either the amplitude or the frequency
is modulated. For each of the modulation types discussed above, we select an example from the scientific literature
and compare with the results obtained there. In these practical applications the matrices in (4) and (5) or (9) and (17)
are enlarged to make the problems overdetermined so that they must be solved in a least-squares sense. We therefore
introduce the notation

H (m)
n,n =

⎛⎜⎜⎜⎜⎜⎝
fm · · · fm+n−1
... . .

. ...

fm+n−1 · · · fm+2n−2
...

...

fm+n−1 · · · fm+n+n−2

⎞⎟⎟⎟⎟⎟⎠ ,

for the rectangular n × n version of the Hankel matrix H (m)
n . Usually, the exact sparsity n (or n in case of modulation) is

unknown and consequently overestimated by η, which then becomes the number of columns in the Hankel matrices. The
total number of samples needed to construct H (0)

n,η and H (1)
n,η is N = n + η.

All data used in the illustrations are contaminated by noise with a signal-to-noise ratio (SNR) that is typical for the
considered application. Our results consistently make use of the validation methods described in Section 4.

5.1. Linear amplitude modulation

Modulation by Laguerre polynomials often occurs in the estimation of time delays [29], for instance in modeling
fluorescence decay in biomedical engineering. Signals involving multiple poles in F (z) also appear in the modeling of
transverse electromagnetic waves [30] and in modeling the evolution of interest rates in finance [31]. A simple physical
example of quadratic amplitude modulation is the critically damped harmonic motion of a spring–mass system [32] which
involves a triple pole in F (z).

We construct a linearly modulated example, as a proof of concept of the validation technique. In theory, we then find
double poles in F (z), each double pole associated with an exponential term. In practice, due to the presence of noise,
we find for every exponential term two close poles. As pointed out in Section 3.1, the poles cannot be retrieved from
MP or MP-SVD but should be retrieved from (8). However, since the validation technique retrieves the Φr and Φ

ρ for
j j

8
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Table 1
Relative errors of linearly modulated signal analysis
(SNR = 20 dB, N = 300, n = 4).

MP-SVD Validation

φ1 8.2 × 10−2 8.7 × 10−3

φ1 8.2 × 10−2 8.7 × 10−3

α10 2.7 × 102 3.5 × 101

α11 2.1 × 100 9.8 × 10−3

φ2 5.8 × 10−3 4.9 × 10−3

φ2 6.7 × 100 4.9 × 10−3

α20 3.5 × 101 8.3 × 100

α21 2.8 × 101 2.9 × 10−2

j = 1, . . . , n, the distance between close poles is magnified to the power r and ρ and this can save the computation when
sing MP or MP-SVD in combination with the validated technique VEXPA. Our example illustrates what can be expected.
onsider

f (t) =

(
0.1 + 0.2

(
1 + t/∆

1

))
exp(−i0.04π t) +

(
0.3 + 0.15

(
1 + t/∆

1

))
exp(−i0.06π t)

ith n = 2, n = 4 and take ∆ = 1. We collect 300 samples f0, . . . , f299 with white Gaussian noise added to achieve a SNR
f 20 dB.
When analyzing the signal using the well-known matrix pencil method [6] to solve the least-squares generalized

igenvalue problem

H (1)
200,100vj = λjH

(0)
200,100vj,

ncluding a reduction of H (0)
200,100 and H (1)

200,100 to rank n = 4 matrices, erroneous results are returned, despite the fact that
he correct sparsity n is passed. As mentioned in Section 4.1, the use of the matrix pencil method jointly with a rank
eduction step is referred to as the MP-SVD method. The method returns two close frequencies approximating φ1, a third
requency in the neighborhood of φ2 and a fourth frequency that is way off. So for the computation of the amplitudes
jℓ, j = 1, 2, ℓ = 0, 1 we have to work with the delivered multiplicities µ1 = 2, µ2 = 1, µ3 = 1 totaling to n = 4, but
ith an erroneous value for n in (10).
The validated technique (we choose r = 4, ρ = 3,M = 1) is combined with a rank reduction of the involved Hankel

atrices to 8 instead of 4 and is used on top of this MP-SVD implementation for the solution of each of the r smaller
xponential analysis problems, each of them using only 75 samples instead of 300.
In Table 1 we show the relative errors on the computed values for the double root φ1 and the amplitudes α10, α11 and

he double root φ2 and the amplitudes α20, α21, averaged over 20 runs.

.2. Cosine amplitude modulation

The increase in the use of sensitive nonlinear electronic loads in industrial, commercial and domestic applications, ne-
essitates a proper understanding of possible power quality disturbances in a distribution system. One of the undesirable
ffects associated with voltage changes is voltage flicker [33], which is a function of both the frequency and magnitude of
he voltage fluctuations. When voltage changes occur in rapid succession with sufficiently large magnitudes, they cause
nnoying lighting level variations.
Voltage flicker is just one of the power quality disturbances. We use it here as an example because it can be expressed

s a trigonometric amplitude modulated waveform. In general, power signal noise results in a SNR of approximately 30 dB.
n [33] the authors consider a so-called more complicated voltage flicker given by

f (t) = [1 + 0.074 cos(56π t) + 0.05 cos(20π t)] cos(100π t) + 0.06 cos(60π t) + 0.05 cos(178π t) + 0.04 cos(450π t).

o n = 8 and n = 16 when expressing the signal as an exponential sum. With the frequencies occurring in complex
onjugate pairs, we are giving the ones with positive imaginary part odd indices (the ones with negative imaginary part
nd even indices are not further discussed separately). The noise-free signal is shown in Fig. 1.
We take ∆ = 1/1500,N = 360 and add 25 dB white Gaussian noise. Without giving the stand-alone MP method the

enefit of a rank reduction of the matrices to n = 16, and thus revealing the correct sparsity, a typical spectral analysis
esult looks like in Fig. 2 at the left. For the validation we further choose r = 3, ρ = 1,M = 2 and compare to the results
in [33] which have similar SNR and N . A typical spectral analysis result using VEXPA is shown in Fig. 2 at the right. In the
latter no rank reduction was performed. So the correct sparsity n = 16 is (in most of the runs) automatically detected,
although we take η = 50 in each decimated problem using N/r = 120 samples. In Table 2 we give a typical relative error
for this example.
9
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Fig. 1. Real-valued voltage flicker f (k/1500), k = 0, 1, 2, . . .

Fig. 2. MP spectral analysis (left, η = 50) and validated spectral analysis (right, η = 50).

Table 2
Relative errors of trigonometrically modulated signal analysis (SNR= 25 dB, N = 360, n = 16).

[33] New [33] New [33] New

φ10 0.0001 0.0001 abs(α10) 0.0031 0.0027 arg(α10) 0.0042 0.0055
φ11 0.0209 0.0070 abs(α11) 0.0486 0.0616 arg(α11) 0.2337 0.2984
φ12 0.0101 0.0176 abs(α12) 0.0020 0.0782 arg(α12) 0.1556 0.4362

φ30 0.0144 0.0035 abs(α30) 0.1333 0.0362 arg(α30) 0.2509 0.0719
φ50 0.0009 0.0017 abs(α50) 0.0260 0.0303 arg(α50) 0.1503 0.1339
φ70 0.0019 0.0013 abs(α70) 0.0375 0.0583 arg(α70) 0.3826 0.3960

5.3. Frequency modulation

Micro-motion appears in many situations and causes frequency modulation. Among others, we mention the vibration
f a running engine [34], the rotation of a radar antenna on a ship [35], and the like. When a radar transmits an
lectromagnetic signal to such a target, one observes a micro-Doppler effect due to the micro-motion in addition to
he regular Doppler frequency shift due to the target’s displacement. The micro-Doppler effect translates to sidebands of
he Doppler frequency. The specific type of a moving vehicle can be determined from the micro-Doppler signature of its
ngine’s vibration. Similarly, mechanical oscillations of a bridge or building can be detected in radar returned signals. In
ost practical micro-Doppler signals the noise cannot be ignored, as its SNR can easily range from 15 dB to 0 dB.
10
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Fig. 3. Log-plot of singular values of H (0)
682,342 .

Fig. 4. MP-SVD spectral analysis (left, η = 20) and validated analysis (right, η = 20).

We analyze the weakly modulated micro-Doppler signal given in [36],

f (t) = exp(i120π t + i0.1 sin(40π t)), (18)

and take ∆ = 1/1000,N = 1024, n = 682, η = 342. From (18) we know that n = 1 and the authors of [36] take µ1 = 1
so that n = 3. We add 10 dB white Gaussian noise and perform a reduction of the Hankel matrices to rank 20 matrices,
both in the MP-SVD method and the validation technique. Note from Fig. 3 that the correct sparsity is hard to deduce from
the singular value decomposition of H (0)

682,342. Nevertheless, the validated technique (with r = 4, ρ = 1,M = 2) averagely
speaking, returns the correct number n = 3 of clusters, as can be seen in Fig. 4, where we illustrate some average spectral
analysis results. From the left figure it is clear that the 3 significant terms cannot be recovered, while the figure at the
right leaves no doubt.

6. Conclusion

With non-stationary signals being even more difficult to analyze reliably, the validated exponential analysis add-on
plays a significant role. From the many experiments that were carried out, we have shown some typical results on a variety
of modulated signals, thereby illustrating the advantage to combine exponential analysis with the proposed alias-free
decimation technique which builds on results from Padé approximation theory.
11
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