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Script environment

This script depends on the random number generator state.

clear

close all

6. Full scale ISAR illustration

When returning to the example in Section 4.3, we take the radar parameters, the
signal-to-noise ratio and the vectors ∆i, i = 1, 2, 3 as specified there. We collect
30000 samples Fs = f(s∆1) and 30000 samples Fsi = f(s∆1 + ∆i), i = 2, 3
along each of the shifts, so a total of 90000 samples in total. These samples are
now reorganized as follows for use with the technique described in Section 5.

With the total of 90000 samples we perform the following analyses. For each of
the analyses we take N = 6000, ν = 2000, η = 1500,n = 6000. The remaining
parameters for the sub-Nyquist sampling in the direction ∆1 are:

• m = 2, µ = 1, κ = 6,p = 0.3;
• m = 3, µ = 1, κ = 4,p = 2/9;
• m = 4, µ = 1, κ = 3,p = 0.125.

In each of the above analyses, the sampling in the direction ∆1 starts with F0

and continues with Fm, F2m, . . . The shifted samples, that serve the purpose of
repairing the possible sub-Nyquist aliasing effect, start with F1 and continue
with Fm+1, F2m+1, . . . In order to make good use of the samples inbetween, the
procedure can be repeated m−1 times with the same m and µ but now starting
the sampling, instead of at F0, at F1 and then at F2 and so on till Fm−1. In this
way a choice of m produces mκ estimates for the exp(Φi), i = 1, . . . , η instead of
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κ, and thus provides a sound basis for validation since mκ is usually sufficiently
large.

For our choices above, we have mκ = 12 for m = 2, 3, 4 and so we can take, for
instance, mδ = (5/6)mκ = 10. In Figure 10 left and right, we show how accurate
the scattering centers are reconstructed, under SNR = 20 noise: with every
scattering center in the original data we associate the log10 of the Euclidean
distance to the nearest reconstructed scattering center (in meter on the x-axis)
and then accumulate these (tally is on the y-axis). The distinction between the
two figures is that Figure 10 (left) is the result for m = 1 (516 scatterers reliably
identified), without the use of the enhancement given in Section 5, and Figure
10 (right) is the result for m = 4 (696 scatterers detected and validated).

The improvement from m = 1 to m = 4 may not seem impressive at first sight.
But note that the accurately reconstructed scattering centers (say log10(·) ≤ −1)
from m = 1, need not be the same as the accurately reconstructed ones from
the use of m = 4. Therefore the combination of both results, merely joining
the 516 reconstructions from m = 1 with the 696 reconstructions from m = 4,
immediately leads to the improved distance graph shown in Figure 11.

Eventually, all runs executed with m = 1, 2, 3, 4 can be combined, merely joining
all the computed scatterer reconstructions: 516 from m = 1, 667 from m = 2,
673 from m = 3 and 696 from m = 4, adding up to 2552 in total, with many of
them (almost) duplicates. This then leads to highly acurate results for most of
the scatterers. In Figure 12 we see that in this combined output 81 percent of
the scatterers is reconstructed within an error of at most 10 cm and 95 percent is
found within a distance of 30 cm! Only 3 scatterers are not reconstructed within
a distance of 1 m. The most inaccurately reconstructed scatterer in Figure 13
is near the engine outlet, where one can note that one reconstruction is slightly
off. In Figure 13 the 2552 reconstructions are displayed altogether. Note that,
thanks to the validation technique, there are no false results, as also pointed
out for Figure 8 where the sub-Nyquist subdivision of the data samples is not
yet put to work.

load(’fighter_1000’)

object_parms.loc = [fighter_x; fighter_y; fighter_z];

object_parms.ampl = s_i;

c = physconst(’LightSpeed’);

ISAR_parms.df = 0.0015e9;

ISAR_parms.dtheta = 3.75e-04;

ISAR_parms.dphi = 3.75e-04;

ISAR_parms.f0 = 7.9e9;

ISAR_parms.theta0 = -0.024;
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ISAR_parms.phi0 = -0.024;

ISAR_parms.fc = 8.4e9;

delta = [ -8, 1, 3 ;

2, -2, 6 ;

6, 27 , 7];

for k = 1:3

bound = 1.1*max(4/c*abs(ISAR_parms.df*...

object_parms.loc(1,:)*delta(k,1)...

+ ISAR_parms.fc*ISAR_parms.dtheta*...

object_parms.loc(2,:)*delta(k,2)...

+ ISAR_parms.fc*ISAR_parms.dphi*...

object_parms.loc(3,:)*delta(k,3)));

delta(k,:) = delta(k,:)/bound;

end

ISAR_parms.delta = delta;

signal_parms.nsamples = 30000;

signal_parms.SNR = 20;

signal_parms.overlap = 0;

signal_parms.nwindow = 1;

ESPRIT_parms.ncols = 2000;

ESPRIT_parms.nrows = 4001;

ESPRIT_parms.nterms = 1500;

ESPRIT_parms.shift = 1;

clust_parms.MinPts = 9;

clust_parms.epsvec = 2.^(0:10)*1e-5;

clust_parms.disc_eps = 0.5;

clust_parms.lb = 0.7;

clust_parms.ub = 1.3;

signal = cell2mat(create_signal(object_parms, ISAR_parms,...

signal_parms));

loc = cell(1,4);

signal_parms.nsamples = 6000;

signal_parms.overlap = 0.6;

ESPRIT_parms.overlap = 0.6;

signal_parms.nwindow = 11;

data = cell(1,signal_parms.nwindow);

step = round((1-signal_parms.overlap)*signal_parms.nsamples);
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for k = 1:signal_parms.nwindow

data{k} = signal(:,(1:signal_parms.nsamples)+(k-1)*step);

end

loc{1} = ISARsolver(data,ISAR_parms,ESPRIT_parms,clust_parms,...

false);

ESPRIT_parms.rate = 2;

signal_parms.nsamples = 12000;

signal_parms.overlap = 0.7;

signal_parms.nwindow = 6;

data = cell(1,signal_parms.nwindow);

step = round((1-signal_parms.overlap)*signal_parms.nsamples);

for k = 1:signal_parms.nwindow

data{k} = signal(:,(1:signal_parms.nsamples)+(k-1)*step);

end

loc{2} = ISARsolver_subsampled(data,ISAR_parms,ESPRIT_parms,...

clust_parms);

ESPRIT_parms.rate = 3;

signal_parms.nsamples = 18000;

signal_parms.overlap = 7/9;

signal_parms.nwindow = 4;

data = cell(1,signal_parms.nwindow);

step = round((1-signal_parms.overlap)*signal_parms.nsamples);

for k = 1:signal_parms.nwindow

data{k} = signal(:,(1:signal_parms.nsamples)+(k-1)*step);

end

loc{3} = ISARsolver_subsampled(data,ISAR_parms,ESPRIT_parms,...

clust_parms);

ESPRIT_parms.rate = 4;

signal_parms.nsamples = 24000;

signal_parms.overlap = 0.875;

signal_parms.nwindow = 3;

data = cell(1,signal_parms.nwindow);

step = round((1-signal_parms.overlap)*signal_parms.nsamples);

for k = 1:signal_parms.nwindow

data{k} = signal(:,(1:signal_parms.nsamples)+(k-1)*step);

end

loc{4} = ISARsolver_subsampled(data,ISAR_parms,ESPRIT_parms,...

clust_parms);
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exp_idx = 1;

N = 100;

n = zeros(1,N);

distvec = 10.^linspace(-3,0,N);

for k = 1:N

dist = distvec(k);

n(k) = n_combined_fun(loc,dist,exp_idx);

end

figure

plot(log10(distvec),n,’b-o’)

grid on

ylim([0,1000])

title({[’Fig. 10: Accuracy of the reconstructed scatterers ’,...

’for m=1 (left) versus the data’],[’(log_{10} of ’,...

’the Euclidean distance)’]})

exp_idx = 4;

N = 100;

n = zeros(1,N);

distvec = 10.^linspace(-3,0,N);

for k = 1:N

dist = distvec(k);

n(k) = n_combined_fun(loc,dist,exp_idx);

end

figure

plot(log10(distvec),n,’b-o’)

grid on

ylim([0,1000])

title({[’Fig. 10: Accuracy of the reconstructed scatterers ’,...

’for m=4 (right) versus the data’],[’(log_{10} of ’,...

’the Euclidean distance)’]})

exp_idx = [1,4];

N = 100;

n = zeros(1,N);

distvec = 10.^linspace(-3,0,N);

for k = 1:N

dist = distvec(k);

n(k) = n_combined_fun(loc,dist,exp_idx);

end

figure

plot(log10(distvec),n,’b-o’)

grid on
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ylim([0,1000])

title({[’Fig. 11: Accuracy of the reconstructed scatterers ’,...

’(m=1 and m=4 combined) versus’], [’the data ’,...

’(log_{10} of the Euclidean distance)’]})

exp_idx = [1,2,3,4];

N = 100;

n = zeros(1,N);

distvec = 10.^linspace(-3,0,N);

for k = 1:N

dist = distvec(k);

n(k) = n_combined_fun(loc,dist,exp_idx);

end

figure

plot(log10(distvec),n,’b-o’)

grid on

ylim([0,1000])

title({[’Fig. 12: Accuracy of the reconstructed scatterers ’,...

’(m=1,2,3,4 combined) versus the’], [’data ’,...

’(log_{10} of the Euclidean distance)’]})

figure;

scatter3(loc{1}(1,:), loc{1}(2,:), loc{1}(3,:), 7,’filled’,...

’MarkerFaceColor’,’r’)

hold on

scatter3(loc{2}(1,:), loc{2}(2,:), loc{2}(3,:), 7,’filled’,...

’MarkerFaceColor’,’r’)

scatter3(loc{3}(1,:), loc{3}(2,:), loc{3}(3,:), 7,’filled’,...

’MarkerFaceColor’,’r’)

scatter3(loc{4}(1,:), loc{4}(2,:), loc{4}(3,:), 7,’filled’,...

’MarkerFaceColor’,’r’)

xlabel(’X’); ylabel(’Y’); zlabel(’Z’);

grid on

view([60,20])

h = plot(shp);

h.FaceColor = [96,96,96]/255;

h.EdgeColor = [96,96,96]/255;

h.FaceAlpha = 0.1;

h.EdgeAlpha = 0.1;

axis([-15 15 -15 15 -5 10]);

title([’Fig. 13: Fighter jet reconstruction of 934 out ’,...

’of 1000 scatterers’])
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function [n,idx,idxloc]=found_scatterers(X,Y,Z,loc1,loc2,loc3,eps)

X = X(:);

Y = Y(:);

Z = Z(:);

loc1 = loc1(:);

loc2 = loc2(:);

loc3 = loc3(:);

N = numel(X);

idx = false(1,N);

idxloc = true(1,numel(loc1));

for j = 1:N

[d,i] = min(sqrt((X(j)-loc1(idxloc)).^2 + ...

(Y(j)-loc2(idxloc)).^2 + ...

(Z(j)-loc3(idxloc)).^2));

if d < eps

idx(j) = true;

vi = true(1,sum(idxloc));

vi(i) = false;

idxloc(idxloc) = vi;

end

end

n = sum(idx);

idxloc = ~idxloc;

end

function n = n_combined_fun(loc,dist,exp_idx)

load(’fighter_1000’)

exp_num = length(exp_idx);

idx = false(1,1000);

n = zeros(1,exp_num);

for k = 1:exp_num

[n(k),idx_tmp,~] = found_scatterers(fighter_x(~idx),...

fighter_y(~idx),fighter_z(~idx),...

loc{exp_idx(k)}(1,:),loc{exp_idx(k)}(2,:),...

loc{exp_idx(k)}(3,:),dist);

idx(~idx) = idx_tmp;

end

n = sum(n);

end
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Fig. 10: Accuracy of the reconstructed scatterers for m=1 (left) versus the data

(log
10

 of the Euclidean distance)
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Fig. 10: Accuracy of the reconstructed scatterers for m=4 (right) versus the data

(log
10

 of the Euclidean distance)
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Fig. 11: Accuracy of the reconstructed scatterers (m=1 and m=4 combined) versus

the data (log
10

 of the Euclidean distance)
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Fig. 12: Accuracy of the reconstructed scatterers (m=1,2,3,4 combined) versus the

data (log
10

 of the Euclidean distance)
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