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Abstract. Special functions are pervasive in all fields of science. The
most well-known application areas are in physics, engineering, chem-
istry, computer science and statistics. Because of their importance, sev-
eral books and a large collection of papers have been devoted to the
numerical computation of these functions. But up to this date, even en-
vironments such as Maple, Mathematica, MATLAB and libraries such
as IMSL, CERN and NAG offer no routines for the reliable evaluation of
special functions. Here the notion reliable indicates that, together with
the function evaluation a guaranteed upper bound on the total error or,
equivalently, an enclosure for the exact result, is computed.

We point out how limit-periodic continued fraction representations of
these functions can be helpful in this respect. The newly developed (and
implemented) scalable precision technique is mainly based on the use of
sharpened a priori truncation error and round-off error upper bounds
for real continued fraction representations of special functions of a real
variable. The implementation is reliable in the sense that it returns a
sharp interval enclosure for the requested function evaluation, at the
same cost as the evaluation.

1 Basic Continued Fraction Material

Let us consider a continued fraction representation of the form

f =
a1

1 +
a2

1 + . . .

=
a1

1
+

a2

1
+ . . . =

∞∑

n=1

an

1
, an := an(x), f := f(x). (1)

Here an is called the n-th partial numerator. We use the notation f and f(x)
interchangeably. The latter is preferred when the dependence on x needs to
be emphasized. We respectively denote by the N -th approximant fN (wN ) or
fN(x; wN ), and N -th tail tN or tN (x) of (1), the values

fN(wN ) = fN (x; wN ) =
N−1∑

n=1

an

1
+

aN

1 + wN
, (2)
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tN = tN (x) =
∞∑

n=N+1

an

1
, t0 = f. (3)

We also need approximants of continued fraction tails and therefore introduce
the notation f

(k)
N (wN+k) or f

(k)
N (x; wN+k) for

f
(k)
N (wN+k) = f

(k)
N (x; wN+k) =

k+N−1∑

n=k+1

an

1
+

aN+k

1 + wN+k
.

Sometimes the notation f (k) is used for the tail tk. A continued fraction is said
to converge if limN→∞ fN (0) exists. Note that convergence to ∞ is allowed. In
the present paper we assume the continued fractions (1) to converge. Moreover,
we restrict ourselves to the case where some wN �= 0 can be chosen such that

lim
N→∞

fN(wN ) = lim
N→∞

fN (0).

The N -th approximant of a continued fraction can also be written as

fN (wN ) = (s1 ◦ . . . ◦ sN )(wN ), sn(w) =
an

1 + w
, n = N, . . . , 1.

Using the linear fractional transformations sn, one can define a sequence
{Vn}n∈IN of value sets for f by:

sn(Vn) =
an

1 + Vn
⊆ Vn−1, n ≥ 1. (4)

The importance of such a sequence of sets lies in the fact that these sets keep
track of where certain values lie. For instance, if wN ∈ VN then fN(wN ) ∈ V0 and
f

(k)
N−k(wN ) ∈ Vk. Also tN ∈ V N and f ∈ V 0. An equally important role is played

by a sequence of convergence sets {En}n∈IN, of which the elements guarantee
convergence of the continued fraction (1) as long as each partial numerator an

belongs to the respective set En:

∀n ≥ 1 : an ∈ En ⇒
∞∑

n=1

an

1
converges.

A sequence {Vn}n∈IN is called a sequence of value sets for a sequence {En}n∈IN
of convergence sets if (4) holds for all an ∈ En. Value sets can also be defined for
non-convergent continued fractions (then the En are called element sets), but in
the current context this form of generality does not interest us.

It is well-known that the tail or rest term of a convergent Taylor series ex-
pansion converges to zero. It is less well-known that the tail of a convergent
continued fraction representation does not need to converge to zero; it does not
even need to converge at all. We give an example for each of the cases. Take for
instance the continued fraction expansion

√
1 + 4x − 1

2
=

∞∑

n=1

x

1
, x ≥ −1

4
.
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Each tail tN converges to 1/2(
√

1 + 4x − 1) as well. More remarkable is that the
even-numbered tails of the convergent continued fraction

√
2 − 1 =

∞∑

n=1

(
(3 + (−1)n)/2

1

)
=

1
1

+
2
1

+
1
1

+
2
1

+ . . .

converge to
√

2 − 1 while the odd-numbered tails converge to
√

2 (hence the
sequence of tails does not converge), and that the sequence of tails {tN}N≥1 =
{N + 1}N≥1 of

1 =
∞∑

n=1

n(n + 2)
1

converges to +∞. Very accurate approximants fN (wN ) for f can be computed
by making an appropriate choice for the tail estimate wN ≈ tN .

We call a continued fraction of the form (1) limit-periodic with period k, if

lim
p→∞ apk+q = ãq, q = 1, . . . , k.

More can be said about tails of limit-periodic continued fractions with period
one, also called limit-periodic continued fractions. Let (1) converge and be limit-
periodic with an ≥ −1/4 and limn→∞ an = ã < ∞. If w̃ is the in modulus smaller
fixpoint of the linear fractional transformation s(w) = ã/(1 + w), then

w̃ = −1
2

+

√
ã +

1
4

= lim
N→∞

tN

and, according to [8],

lim
N→∞

∣∣∣∣
f(x) − fN (x; w̃)
f(x) − fN (x; 0)

∣∣∣∣ = 0.

Hence a suitable choice of w in (2) may result in more rapid convergence of the
approximants (w = 0 is usually used as a reference).

In this paper we further restrict the condition that (1) converges, in the case
of limit-periodic continued fractions, to the condition an ≥ −1/4 and {an}n∈IN
bounded [7, pp. 150–159]. This condition automatically implies that ã ≥ −1/4
and w̃ is real.

2 Truncation Error

Most truncation error upper bounds for |f(x) − fN (x; wN )| are given for the
classical choice wN = 0. For continued fractions with partial numerators of the
form an(x) = αnx with αn > 0 we refer among others to the a priori Gragg-
Warner bound

|f(x) − fN (x; 0)| ≤ 2
|a1|
cos φ

N�

k=2

�
1 + 4|ak|/ cos2(φ) − 1�
1 + 4|ak|/ cos2(φ) + 1

, −π < 2φ = arg(x) < π.
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which holds for N ≥ 2 and the a posteriori Henrici-Pfluger bound

|f(x) − fN (x; 0)| ≤

⎧
⎨

⎩

|fN (x; 0) − fN−1(x; 0)|, | arg(x)| ≤ π/2,
|fN (x; 0) − fN−1(x; 0)|

| sin (arg(x)) | , π/2 < | arg(x)| < π.

In [4] we prove a practical and sharp truncation error bound for the case
wN �= 0, which is valid for all continued fractions with real partial numerators
an(x). This result departs from the Oval Sequence Theorem [7, pp. 145–147],
which holds in the complex plane, from which a priori truncation error estimates
can be obtained in case wN �= 0. In the real case the involved value sets Vn

and convergence sets En are intervals and the theorem can be simplified and
sharpened to the real Interval Sequence Theorem [4], here Theorem 1.

Theorem 1. Let for all n the values Ln and Rn satisfy −1/2 ≤ Ln ≤ Rn < ∞
and let

bn := (1 + sign(Ln)max(|Ln|, |Rn|)) Ln−1,

cn := (1 + sign(Ln)min(|Ln|, |Rn|)) Rn−1,

satisfy bn ≤ cn and 0 ≤ bncn. Then the sequence {Vn}n∈IN with Vn = [Ln, Rn] is
a sequence of value sets for the sequence {En}n∈IN of convergence sets given by

En = [bn, cn] =

{
[(1 + Rn)Ln−1, (1 + Ln)Rn−1], bn ≥ 0,

[(1 + Ln)Ln−1, (1 + Rn)Rn−1], bn ≤ 0.

For wN ∈ VN the relative truncation error |f(x) − fN (x; wN )|/|f(x)| is bounded
by ∣∣∣∣

f(x) − fN(x; wN )
f(x)

∣∣∣∣ ≤ RN − LN

1 + LN

N−1∏

k=1

Mk (5)

where Mk = max{|u/(1 + u)| : u ∈ Vk} = max{|Lk/(1 + Lk)|, |Rk/(1 + Rk)|}.
In Theorem 1 the sets En are deduced from the intervals Vn = [Ln, Rn] and the
bounds of En are formulated in terms of Ln and Rn. In the following Lemma 1 [4]
we formulate Ln and Rn in terms of the bounds on an in En and associate
intervals Vn with given intervals En, instead of the other way around. Let En =
[bn, cn] with −1/4 ≤ bn ≤ cn and bncn ≥ 0. The condition that bn and cn have
the same sign means nothing more than that at least sign(an) is kept fixed in
En.

Lemma 1. If the sequence of convergence sets {En}n∈IN is given by En =
[bn, cn] with bn ≥ −1/4 and 0 ≤ bncn, then the corresponding sequence of value
sets {Vn}n∈IN is given by Vn = [Ln, Rn] where Ln and Rn are particular tails of
the continued fractions

D̂ =
b1

1
+

c2

1
+

b3

1
+

c4

1
+ . . . ,

Û =
c1

1
+

b2

1
+

c3

1
+

b4

1
+ . . . ,
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and

Ď =
b1

1
+

b2

1
+

b3

1
+

b4

1
+ . . . ,

Ǔ =
c1

1
+

c2

1
+

c3

1
+

c4

1
+ . . . ,

More precisely, denoting the tails of D̂, Ď and Û , Ǔ respectively by D̂(n), Ď(n)

and Û (n), Ǔ (n) we have when all bn ≥ 0:

L2j = D̂(2j),

R2j = Û (2j),

L2j−1 = Û (2j−1),

R2j−1 = D̂(2j−1),
(6)

and when all bn ≤ 0:
Ln = Ď(n), Rn = Ǔ (n). (7)

3 Round-Off Error

Several algorithms exist for the computation of fN(w), the most stable [5] being
the backward recurrence algorithm

F
(N)
N+1 = wN

F (N)
n =

an

1 + F
(N)
n+1

, n = N, N − 1, . . . , 1

fN(w) = F
(N)
1

For the backward recurrence algorithm to be useful in a scalable precision con-
text, it must be possible to determine N rather easily a priori, in other words
which approximant to compute.

When actually implementing fN(wN ), we need to take into account that each
basic operation ∗ ∈ {+, −, ×, ÷} is being replaced by an (IEEE compliant)
floating-point operation � ∈ {⊕, �, ⊗, �}. Such a floating-point implementation
is characterized by four parameters, being the base β used for the internal num-
ber representation, the precision or amount p of β-digits, and the exponent range
[emin, emax] allowed in the floating-point notation. Usually the rounding mode
in use is round-to-nearest (with the proper tie break). Each basic floating-point
operation x � y is then subject to a relative error of at most 1/2 ulp [3] where
one ulp or unit-in-the-last-place equals β−p+1. Also each partial numerator an

needs to be converted to a floating-point number ăn, hence entailing a relative
rounding error εn given by

ăn = an(1 + εn).

Here |εn| is usually no more than a few ulp. Without loss of generality, we assume
that wN ∈ VN is a floating-point number estimating tN . When executing the
backward recurrence, each computed F̆

(N)
n then differs from the true F

(N)
n by a
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rounding error ε
(N)
n , and this for n = N, . . . , 1, in other words

F̆
(N)
N+1 = wN , ε

(N)
N+1 = 0,

F̆ (N)
n = ăn �

(
1 ⊕ F̆

(N)
n+1

)
, n = N, . . . , 1

=
ăn

1 + F̆
(N)
n+1

(1 + δn)

= F (N)
n (1 + ε(N)

n )

F̆
(N)
1 = F

(N)
1 (1 + ε

(N)
1 )

Here δn is the relative rounding error introduced in step n of the algorithm. The
question how large |ε(N)

1 | is, is answered in Lemma 2 [6] and Theorem 2, the
latter being a slight generalization of a result proved in [6]. Let us introduce the
notation

γ(N)
n = F

(N)
n+1/(1 + F

(N)
n+1), n = 1, . . . , N.

Lemma 2. Let {Vn}∞n=1 be a sequence of value sets for (1). If F
(N)
N+1 = wN ∈

VN , then for 1 ≤ n ≤ N ,

|γ(N)
n | =

∣∣∣∣∣
F

(N)
n+1

1 + F
(N)
n+1

∣∣∣∣∣ ≤ M = max
n=1,...,N

Mn.

Theorem 2. Let F
(N)
N+1 = wN be a floating-point number and let for n =

1, . . . , N ,

|εn| ≤ ε ulp,

|δn| ≤ δ ulp,

|γ(N)
n | ≤ M.

Let the base β and precision p of the IEEE arithmetic in use satisfy
(

1 + M(1 + 2ε + 2δ)
MN−1 − 1

M − 1

)
ulp < 1.

Then |ε(N)
1 | is bounded by

|ε(N)
1 | ≤ 1

2
(1 + 2ε + 2δ)

MN − 1
M − 1

ulp.

From Theorem 2 we obtain for the relative round-off error:

|fN (x; wN ) − F̆
(N)
1 |

|f(x)| =
∣∣∣ε(N)

1

∣∣∣
|F (N)

1 |
|f(x)| ≤ 1 + 2ε + 2δ

2
MN − 1
M − 1

|F (N)
1 |

|f(x)| β−p+1. (8)
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4 Towards a Reliable Implementation

Let us denote the right hand side of (5) by εT and the right hand side of (8) by
εR. Clearly

εT = εT (N, b1, . . . , bN , c1, . . . , cN )

and
εR = εR(N, β, p, M1, . . . , MN).

In order to guarantee that F̆
(N)
1 has s significant β-digits, meaning that

∣∣∣f − F̆
(N)
1

∣∣∣
|f | ≤ εT + εR ≤ σ =

β

2
β−s

we proceed as follows:

– we determine N (and wN ∈ VN ) from the condition

εT (N, b1, . . . , bN , c1, . . . , cN) ≤ τ < σ (9)

– we determine a suitable precision p (for chosen β) from the condition

εR(N, β, p, M1, . . . , MN) ≤ ρ < σ (10)

with τ ≥ 0, ρ ≥ 0, τ + ρ = σ. The former condition directly involves the inaccu-
racy |cn − bn| that we allow for the partial numerators an. The latter condition
depends on the sequence of values Mn, hence on the Ln and Rn which can be
obtained from the bn and cn.

Obtaining a useful value wN is the remaining crucial step. To this end we
need to establish a few new results. We further distinguish between

– limit-periodic continued fractions where an → ã from one side, say {an}n∈IN
is a decreasing (or increasing) sequence with limn→∞ an = ã,

– and limit-periodic fractions where an → ã in an alternating fashion, say
the sequences {a2n+1}n∈IN and {a2n}n∈IN respectively decrease and increase
towards their mutual limit ã.

Let us denote the j-th approximants of Rk and Lk as given by (6) and (7) in
Lemma 1, by Rk,j(ωj) and Lk,j(ωj) respectively. For the tail estimates in (6)
and (7) we switch to the notation ωj instead of the traditional wj used in (2) in
order to avoid confusion between the different tails. Detailed proofs of the new
results will be given in future work [2]. For the time being we focus on the role of
these results in a procedure for the reliable evaluation of special functions that
allow a limit-periodic continued fraction representation (in a certain region of
the real variable x).

For the accurate computation of a suitable N from (9) we need to know
|Rk − Lk| for k = 1, . . . , N , in other words an upper bound for Rk and a lower
bound for Lk. In order to obtain a suitable wN , meaning a value wN ∈ VN , we
need to know the interior of [LN , RN ] or an upper bound for LN and a lower
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bound for RN . Both can be realized by computing enclosures for the values
Lk and Rk. These upper and lower bounds for Lk and Rk are given in the
Lemmas 3, 4 and 5. Some additional care needs to be taken, but for the moment
we restrict ourselves to the headlines of the technique. More details will be given
in [2].

4.1 Case an Positive

When (1) has positive partial numerators an, then the values Mk in Theorem 1
equal

Mk =
Rk

1 + Rk
, k = 1, . . . , N − 1.

In Lemma 3 we explicit the bounds on Lk and Rk in case the partial numerators
an show an oscillatory behaviour towards the limit ã. In Lemma 4 we treat the
case where the an decrease monotonically to ã.

Lemma 3. Let the sequences {a2n+1}n∈IN, {b2n+1}n∈IN, {c2n+1}n∈IN and the se-
quences {a2n}n∈IN, {b2n}n∈IN, {c2n}n∈IN respectively decrease and increase to
their mutual limit ã. With

2ω = −1 +
√

4ã + 1,

2ω
(�)
k,2j−1 = ck+2j − bk+2j+1 − 1 +

√
4ck+2j + (ck+2j − bk+2j+1 − 1)2,

2ω
(�)
k,2j = bk+2j+1 − ck+2j+2 − 1 +

√
4bk+2j+1 + (bk+2j+1 − ck+2j+2 − 1)2,

2ω
(r)
k,2j = ck+2j+1 − bk+2j+2 − 1 +

√
4ck+2j+1 + (ck+2j+1 − bk+2j+2 − 1)2,

2ω
(r)
k,2j−1 = bk+2j − ck+2j+1 − 1 +

√
4bk+2j + (bk+2j − ck+2j+1 − 1)2,

the following bounds can be given for Lk and Rk where � ≥ 1 and j ≥ 0:

L2�−1,2j(ω
(�)
2�−1,2j) ≤ L2�−1 ≤ L2�−1,2j(ω),

L2�−1,2j+1(ω
(�)
2�−1,2j+1) ≤ L2�−1 ≤ L2�−1,2j+1(ω),

L2�,2j(ω) ≤ L2� ≤ L2�,2j(ω
(�)
2�,2j),

L2�,2j+1(ω) ≤ L2� ≤ L2�,2j+1(ω
(�)
2�,2j+1),

and

R2�−1,2j(ω
(r)
2�−1,2j) ≤ R2�−1 ≤ R2�−1,2j(ω),

R2�−1,2j+1(ω
(r)
2�−1,2j+1) ≤ R2�−1 ≤ R2�−1,2j+1(ω),

R2�,2j(ω) ≤ R2� ≤ R2�,2j(ω
(r)
2�,2j),

R2�,2j+1(ω) ≤ R2� ≤ R2�,2j+1(ω
(r)
2�,2j+1).
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Lemma 4. Let the sequences {an}n∈IN, {bn}n∈IN, {cn}n∈IN all decrease to ã ≥ 0.
With

2ω
(01)
k,j = ã − ck+j+2 − 1 +

√
4ã + (ã − ck+j+2 − 1)2,

2ω
(10)
k,j = bk+j+1 − ã − 1 +

√
4bk+j+1 + (bk+j+1 − ã − 1)2,

2ω
(20)
k,j = ck+j+1 − ã − 1 +

√
4ck+j+1 + (ck+j+1 − ã − 1)2,

2ω
(02)
k,j = ã − bk+j+2 − 1 +

√
4ã + (ã − bk+j+2 − 1)2,

the following bounds can be given for Lk and Rk where k ≥ 1 and j ≥ 0:

Lk,2j(ω
(02)
k,2j) ≤ Lk ≤ Lk,2j(ω

(10)
k,2j),

Lk,2j+1(ω
(20)
k,2j+1) ≤ Lk ≤ Lk,2j+1(ω

(01)
k,2j+1),

and

Rk,2j(ω
(01)
k,2j) ≤ Rk ≤ Rk,2j(ω

(20)
k,2j),

Rk,2j+1(ω
(10)
k,2j+1) ≤ Rk ≤ Rk,2j+1(ω

(02)
k,2j+1),

4.2 Case an Negative

When (1) has negative partial numerators an, then the values Mk in Theorem 1
equal

Mk =
|Lk|

1 + Lk
, k = 1, . . . , N − 1.

In Lemma 5 we explicit the bounds on Lk and Rk in case the partial numer-
ators an form a monotonic sequence towards the limit ã, either decreasing or
increasing.

Lemma 5. Let k ≥ 1, j ≥ 0 and

2ω = −1 +
√

4ã + 1,

2ω
(�)
k,j = −1 +

√
4bk+j+1 + 1,

2ω
(r)
k,j = −1 +

√
4ck+j+1 + 1.

If the sequences {an}n∈IN, {bn}n∈IN, {cn}n∈IN are decreasing with limn→∞ an =
limn→∞ bn = limn→∞ cn = ã, then

Lk,j(ω) ≤ Lk ≤ Lk,j(ω
(�)
k,j),

Rk,j(ω) ≤ Rk ≤ Rk,j(ω
(r)
k,j).

If the sequences {an}n∈IN, {bn}n∈IN, {cn}n∈IN are increasing with limn→∞ an =
limn→∞ bn = limn→∞ cn = ã, then

Lk,j(ω
(�)
k,j) ≤ Lk ≤ Lk,j(ω),

Rk,j(ω
(r)
k,j) ≤ Rk ≤ Rk,j(ω).
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4.3 Mixed Case

The condition that (1) has either only positive or only negative partial numera-
tors an can be relaxed, as long as it is satisfied from a certain n on. If the number
of terms with mixed behaviour is small, we can proceed as in [4]. If it is larger,
then an alternative technique based on a combination of a small number of pre-
dictions and corrections, can be used [1]. The latter uses the same estimates as
given in the Lemmas 3, 4 and 5.

5 Numerical Illustration

The collection of functions that can be evaluated reliably using this technique is
impressive. It essentially includes all functions that have a known limit-periodic
continued fraction representation. If the behaviour of the partial numerators an

(increasing, decreasing, oscillating) is known then the current technique can be
applied. If the behaviour varies as n grows, like in some hypergeometric functions,
the related technique explained in [1] can be applied.

Without the ambition of being exhaustive, we are currently working at im-
plementations for:

– the (lower and upper) incomplete gamma functions γ(a, x) and Γ (a, x),
– the error and complementary error function, Dawson’s integral, the expo-

nential integrals and several probability distributions that can be expressed
in terms of these functions,

– the hypergeometric and confluent hypergeometric functions 2F1(a, 1; c; x)
and 1F1(1; b; x), and several ratios of hypergeometric and confluent hyper-
geometric functions,

– particular ratios of Bessel, spherical Bessel, modified Bessel, modified spher-
ical Bessel, Whittaker and parabolic cylinder functions.

Here we give two numerical examples, one where the continued fraction rep-
resentation (1) has positive an and one where the partial numerators an are
negative.

5.1 Positive an

We consider

f(a, x) =
aγ(a, x)ex

xa
=

a
a−x

1 +

∞∑

n=2

(n−1)x
(a+n−1−x)(a+n−2−x)

1
(11)

where γ(a, x) is the (lower) incomplete gamma function. The sequence {an}n∈IN
is decreasing with ã = 0. Then Lk and Rk simplify to Lk = 0 and Rk = ak+1 for
[bn, cn] = [0, an]. We take x = 1 and a = 9/2 and require f(a, x) to be evaluated
with

εT + εR ≤ 10−d+1, d = 73, 74, . . . , 80.
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where τ and ρ in (9) and (10) are both taken equal to 5 × 10−d. The results
can be found in Table 1. Let us zoom in on the first line of output. For d = 73,
the bound εT given by (5) is less than 2.0 × 10−73 if N ≥ 49. Subsequently we
choose our working precision p in (8) so as to keep εR below 5.0 × 10−73. Here
we take β = 10 because we are going to compare our evaluation with that given
by the multiprecision implementation of Maple. From Theorem 1 we learn that
all wN satisfying

LN = 0 ≤ wN ≤ 1.812 × 10−2 < RN = aN+1

are valid choices as a tail estimate, the easiest being wN = 0.
In Table 2 we have set Digits in Maple to d and printed the result for the

evaluation of f(a, x) delivered by this computer algebra system. Clearly the
evaluation in Maple is subject to a much larger error (2 or 3 trailing decimal
digits are inaccurate in this case).

Table 1. Continued fraction library output

73 1.214009591773512617777498734645198390079596056622283491877162409691879700
74 1.2140095917735126177774987346451983900795960566222834918771624096918797000
75 1.21400959177351261777749873464519839007959605662228349187716240969187969998
76 1.214009591773512617777498734645198390079596056622283491877162409691879699983
77 1.2140095917735126177774987346451983900795960566222834918771624096918796999829
78 1.21400959177351261777749873464519839007959605662228349187716240969187969998292
79 1.214009591773512617777498734645198390079596056622283491877162409691879699982919
80 1.2140095917735126177774987346451983900795960566222834918771624096918796999829190

Table 2. Maple output

73 1.214009591773512617777498734645198390079596056622283491877162409691879774
74 1.2140095917735126177774987346451983900795960566222834918771624096918797015
75 1.21400959177351261777749873464519839007959605662228349187716240969187969966
76 1.214009591773512617777498734645198390079596056622283491877162409691879700001
77 1.2140095917735126177774987346451983900795960566222834918771624096918796999764
78 1.21400959177351261777749873464519839007959605662228349187716240969187969998223
79 1.214009591773512617777498734645198390079596056622283491877162409691879699982930
80 1.2140095917735126177774987346451983900795960566222834918771624096918796999829239

5.2 Negative an

Let us consider the function

f(x) =
exp(−x2)

2
√

πx(2x2 + 1)erfc(x)
− 1 =

∞∑

n=1

−(2n+1)(2n+2)
(2x2+5+4n)(2x2+1+4n)

1

and x = 2. The partial numerators are negative and decrease to ã = −1/4. We
target εT ≤ 2−79 ≈ 1.65 × 10−24 and use exact arithmetic for a change (hence
εR = 0).
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The bound (5) is less than 2−79 for N ≥ 59. For j = 12 we obtain in addition
that

tN+1 = LN < LN,j

(
−1 +

√
4aN+2 + 1
2

)
< RN,j(−1/2) < RN = tN

and hence that all wN satisfying

LN,j

(
−1 +

√
4aN+2 + 1
2

)
< −0.37621 ≤ wN ≤ −0.37527 < RN,j(−1/2)

are valid choices for the approximation of f(x) by fN(x; wN ), since they belong
to VN guaranteed.
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