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Abstract. It is well-known that the classical univariate orthogonal poly-
nomials give rise to highly efficient Gaussian quadrature rules. We show
how the classical orthogonal polynomials can be generalized to a multi-
variate setting and how this generalization leads to Gaussian cubature
rules for specific families of multivariate polynomials.
The multivariate homogeneous orthogonal functions that we discuss here
satisfy a unique slice projection property: they project to univariate or-
thogonal polynomials on every one-dimensional subspace spanned by a
vector from the unit hypersphere. We therefore call them spherical or-
thogonal polynomials.

1 Spherical Orthogonal Polynomials

The orthogonal polynomials under discussion were first introduced in [1] in a
different form and later in [3] in the current form. Originally they were not
termed spherical orthogonal polynomials because of a lack of insight into the
mechanism behind the definition.

In dealing with multivariate polynomials and functions we shall often switch
between the cartesian and the spherical coordinate system. The cartesian co-
ordinates X = (x1, . . . , xn) ∈ R

n are then replaced by X = (x1, . . . , xn) =
(ξ1z, . . . , ξnz) with ξk, z ∈ R where the directional vector ξ = (ξ1, . . . , ξn) be-
longs to the unit sphere Sn = {ξ : ||ξ||p = 1}. Here || · ||p denotes one of the usual
Minkowski norms. While ξ contains the directional information of X, the vari-
able z contains the (possibly signed) distance information. With the multi-index
κ = (κ1, . . . , κn) ∈ N

n the notations Xκ, κ! and |κ| respectively denote

Xκ = xκ1
1 . . . xκn

n κ! = κ1! . . . κn! |κ| = κ1 + . . . + κn

Since z can be positive as well as negative and hence two directional vectors can
generate X, we also introduce a signed distance function

sd(X) = sgn(x1)||X||p
For the sequel of the discussion we need some more notation. We denote by
R[z] the linear space of polynomials in the variable z with real coefficients, by
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R[ξ] = R[ξ1, . . . , ξn] the linear space of n-variate polynomials in ξk with real
coefficients, by R(ξ) = R(ξ1, . . . , ξn) the commutative field of rational functions
in ξk and with real coefficients, by R(ξ)[z] the linear space of polynomials in
the variable z with coefficients from R(ξ) and by R[ξ][z] the linear space of
polynomials in the variable z with coefficients from R[ξ].

Let us introduce the linear functional Γ acting on the variable z as Γ (zi) =
ci(ξ), where ci(ξ) is a homogeneous expression of degree i in the ξk. For our
purpose we take

ci(ξ) =
∑

|κ|=i

cκξκ cκ =
|κ|!
κ!

∫
. . .

∫

||X||p≤1
w (||X||p) Xκ dX (1)

Γ (zi) =
∫

. . .

∫

||X||p≤1
w (||X||p)

(
n∑

k=1

xkξk

)i

dX dX = dx1 . . . dxn (2)

The n-variate polynomials under investigation are of the form

Vm(X) = Vm(z) =
m∑

i=0

Bm2−i(ξ)zi Bm2−i(ξ) =
∑

|κ|=m2−i

bκξκ (3)

The function Vm(X) is a polynomial of degree m in z with polynomial coef-
ficients from R[ξ]. The coefficients Bm(m−1)(ξ), . . . , Bm2(ξ) are homogeneous
polynomials in the parameters ξk. The function Vm(X) does itself not belong
to R[X] but since Vm(X) = Vm(z), it belongs to R[ξ][z]. Therefore the function
Vm(X) is given the name spherical polynomial: with every ξ ∈ Sn the function
Vm(X) = Vm(z) is associated which is a polynomial of degree m in the variable
z = sd(X). Imposing the orthogonality conditions

Γ (ziVm(z)) = 0 i = 0, . . . , m − 1 (4)

signifies for Vm(z) and for i = 0, . . . , m − 1:

Γ (ziVm(z)) =
∫

. . .

∫

||X||p≤1
w(||X||p)

(
n∑

k=1

xkξk

)i

Vm

(
n∑

k=1

xkξk

)
dX = 0

With the ci(ξ) we define the polynomial Hankel determinants

Hm(ξ) =

∣∣∣∣∣∣∣∣∣∣

c0(ξ) · · · cm−1(ξ)
... . .. cm(ξ)

...
cm−1(ξ) · · · c2m−2(ξ)

∣∣∣∣∣∣∣∣∣∣

H0(ξ) = 1

and call the functional Γ definite if

Hm(ξ) �≡ 0 m ≥ 0

In the sequel of the text we assume that Vm(z) satisfies (4) and that Γ is
a definite functional. Also we use both the notation Vm(X) and Vm(z) inter-
changeably to refer to (3).
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2 Connection with Classical Orthogonal Polynomials

With w(||X||p) = 1 in (4) so-called spherical Legendre polynomials are obtained

and with w(||X||p) = 1/
√

1 − ||X||2p spherical Tchebyshev polynomials. Let us
now fix ξ = ξ∗ and take a look at the projected polynomials

Vm,ξ∗(z) = Vm(ξ∗
1z, . . . , ξ∗

nz)

which are polynomials of degree m in z. Are these projected polynomials them-
selves orthogonal? If so, what is their relationship to the univariate Legendre
and Tchebyshev polynomials?

We introduce the univariate linear functional c∗ acting on the variable z, by

c∗(zi) = ci(ξ∗) = Γ (zi) |ξ=ξ∗ (5)

In what follows we use the notation Vm(z) to denote the univariate polynomials
of degree m orthogonal with respect to the linear
Theorem 1. Let the monic univariate polynomials Vm(z) satisfy the orthogo-
nality conditions c∗(ziVm(z)) = 0 with c∗ given by (5) and i = 0, . . . , m − 1,
and let the multivariate functions Vm(X) = Vm(z) satisfy the orthogonality con-
ditions (4). Then for X∗ = (ξ∗

1z, . . . , ξ∗
nz),

Hm(ξ∗)Vm(z) = pm(ξ∗)Vm,ξ∗(z) = pm(ξ∗)Vm(X∗)

In words, Theorem 2 says that, up to a normalizing factor pm(ξ∗)/Hm(ξ∗), the
orthogonality conditions and the projection operator commute.

With respect to the projection property it is important to point out that
c∗(zi) does not coincide with the one-dimensional version of cκ given by (2),
meaning (2) for n = 1 and κ = i. While in the one-dimensional situation, the
linear functional

c(zi) = ci =
∫ 1

−1
w(|x|)xi dx (6)

gives rise to the classical orthogonal polynomials, we do not immediately retrieve
these classical polynomials from the projection, because the projected functional
c∗ given by (5) does not coincide with the functional c given by (6).

3 Gaussian Cubature Formulas

If the functional Γ is positive definite, in other words if Hm(ξ) > 0 for m ≥ 0,
then the zeroes z

(m)
i (ξ∗) of Vm,ξ∗(z) are real and simple. In a neighbourhood

of z
(m)
i (ξ∗) holds that z

(m)
i (ξ∗) = φ

(m)
i (ξ∗) for a unique holomorphic function

φ
(m)
i (ξ∗). Let us denote

Wm−1(u) = Γ

(Vm(z) − Vm(u)
z − u

)

A
(m)
i (ξ) =

Wm−1,ξ(z
(m)
i )

V ′
m,ξ(z

(m)
i )

=
Wm−1(φ

(m)
i (ξ))

V ′
m(φ(m)

i (ξ))
(7)
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Here the functions Wm−1(z) are also spherical polynomials, now of degree m−1
in z. Then the following cubature formula can rightfully be called a Gaussian
cubature formula [2].
Theorem 2. Let P(z) be a polynomial of degree 2m − 1 belonging to R(ξ)[z].
Let the functions φ

(m)
i (ξ) be mutually distinct. Then

∫
. . .

∫

||X||p≤1
w(||X||p) P(

∑n
k=1 ξkxk) dX =

∑m
i=1 A

(m)
i (ξ)P(φ(m)

i (ξ))

The m-point Gaussian cubature formula from Theorem 3, with its parametrized
nodes and weights, in fact exactly integrates an entire parametrized family of
polynomials, over a domain in R

n. We illustrate Theorem 3 with a bivariate
example. Consider again the �2-norm and take

P(z) =
ξ1

ξ2 + 1
z3 +

ξ2

ξ2
1 + 1

z2 + z + 10

Then

φ
(2)
1 (ξ) =

1
2

√
ξ2
1 + ξ2

2 φ
(2)
2 (ξ) = −1

2

√
ξ2
1 + ξ2

2 A
(2)
1 (ξ) = A

(2)
2 (ξ) =

π

2
∫ ∫

||(x,y)||≤1
P(ξ1x + ξ2y)dx dy =

π
(
ξ3
2 + ξ2ξ

2
1 + 40ξ2

1 + 40
)

4 (ξ2
1 + 1)

= A
(2)
1 P(φ(2)

1 (ξ)) + A
(2)
2 P(φ(2)

2 (ξ))

Two members of this family that are exactly integrated over the unit disk are
for instance P1(x, y) and P2(x, y) which are obtained by choosing (ξ1, ξ2) =
(3/5, 4/5) and (ξ1, ξ2) = (−√

2/2, −√
2/2) respectively.
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