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Abstract. In signal processing, the Fourier transform is a popular me-
thod to analyze the frequency content of a signal, as it decomposes the
signal into a linear combination of complex exponentials with integer
frequencies. A fast algorithm to compute the Fourier transform is based
on a binary divide and conquer strategy.
In computer algebra, sparse interpolation is well-known and closely re-
lated to Prony’s method of exponential fitting, which dates back to 1795.
In this paper we develop a divide and conquer algorithm for sparse in-
terpolation and show how it is a generalization of the FFT algorithm.
In addition, when considering an analog as opposed to a discrete version
of our divide and conquer algorithm, we can establish a connection with
digital filter theory.

1 Sparse interpolation

Let the function �(t) be given by

�(t) =
nX

i=1

↵i exp(2⇡iµit)

and let us consider the general nonlinear interpolation problem of the samples
�(tj), given by

�(tj) =
nX

i=1

↵i exp(2⇡iµij/M), j = 0, . . . , 2n� 1, . . . (1)

with
p
�1 = i, distinct µi 2 C, ↵i 2 C \ {0}, |Re(µi)| < M/2, tj = j/M,

where, without loss of generality, M 2 IN. A solution of this interpolation prob-
lem was already presented in 1795 in [1] and can also be found in [2, pp. 378–
382]. Let us denote ⌦i = exp(2⇡iµi/M), with ⌦i 6= ⌦k when i 6= k because
|Re(µi)| < M/2. It is apparent that the data �(tj) are structured, namely

�(tj) =
nX

i=1

↵i⌦
j
i , j = 0, . . . , 2n� 1, . . . (2)
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We now want to obtain the values ⌦i, i = 1, . . . , n and ↵i, i = 1, . . . , n from
the 2n samples �(tj). From ⌦i the value µi can easily be deduced because
2⇡|Re(µi)|/M < ⇡ and hence no periodicity problem arises. Temporarily we
assume that n is known. How n can be extracted from the samples is explained
in Sect. 2.

Consider the polynomial

nY

i=1

(z �⌦i) = zn + bn�1z
n�1 + · · ·+ b1z + b0 (3)

with so far unknown coe�cients bi, i = 1, . . . , n. Since the ⌦i are its zeroes, we
find for k � 0,

0 =
nX

i=1

↵i⌦
k
i (⌦

n
i + bn�1⌦

n�1
i + · · ·+ b0)

=
nX

i=1

↵i⌦
n+k
i +

n�1X

j=0

bj

 
nX

i=1

↵i⌦
j+k
i

!

= �(tk+n) +
n�1X

j=0

bj�(tk+j).

In other words, we can conclude that the structured data �(tj) are linearly
generated,

0

B@
�(t0) . . . �(tn�1)
...

. . .
...

�(tn�1) . . . �(t2n�2)

1

CA

0

B@
b0
...

bn�1

1

CA = �

0

B@
�(tn)

...
�(t2n�1)

1

CA . (4)

This linear system allows us to compute the coe�cients bi, i = 0, . . . , n� 1 and
actually compose the polynomial (3) having ⌦i, i = 1, . . . , n as its zeroes. Let us

now denote by H
(r)
n the Hankel matrix

H(r)
n =

0

B@
�(tr) . . . �(tr+n�1)
...

. . .
...

�(tr+n�1) . . . �(tr+2n�2)

1

CA

and by H
(0)
n (z) the Hankel polynomial [3, p. 625]

H(0)
n (z) =

���������

�(t0) . . . �(tn�1) �(tn)
...

. . .
...

...
�(tn�1) . . . �(t2n�2) �(t2n�1)

1 . . . zn�1 zn

���������

.

Then
nY

i=1

(z �⌦i) =
H

(0)
n (z)

|H(0)
n |

,



where |H(0)
n | denotes the determinant of H(0)

n . From the matrix factorisations

H(0)
n = VnD↵V

T
n ,

H(1)
n = VnD↵

0

B@
⌦1

. . .
⌦n

1

CAV T
n ,

where Vn and D↵ respectively denote the Vandermonde matrix

Vn =

0

BBB@

1 1 . . . 1
⌦1 ⌦2 . . . ⌦n
...

...
...

⌦n�1
1 ⌦n�1

2 . . . ⌦n�1
n

1

CCCA

and the diagonal matrix

D↵ =

0

B@
↵1

. . .
↵n

1

CA ,

it is easy to see that the polynomial zeroes ⌦i can also be obtained as generalized
eigenvalues [4,5]. So the ⌦i also satisfy

det
⇣
H(1)

n �⌦iH
(0)
n

⌘
= 0, i = 1, . . . , n. (5)

The coe�cients ↵i in the model (1) can be obtained from any set of n interpo-
lation conditions taken from (2),

0

B@
⌦j

1 . . . ⌦j
n

...
...

⌦j+n�1
1 . . . ⌦j+n�1

n

1

CA

0

B@
↵1
...
↵n

1

CA =

0

B@
�(tj)
...

�(tj+n�1)

1

CA , 0  j  n. (6)

With ⌦i computed as above, the remaining equations are linearly dependant.
Whether solving (4) or (5), the Hankel matrices involved tend to become

quite ill-conditioned when n increases [6,7]. So in practice, one may be interested
in a divide and conquer approach where the full system is divided into several
smaller systems, thus keeping the condition number under control. In Sect. 2 we
present such an algorithm, which we connect to the traditional FFT in Sect. 3.
Our goal is not to incorporate sparsity considerations into the FFT algorithm as
in [8], but rather to add the divide and conquer approach of the FFT to sparse
interpolation. Related work can be found in [9] where digital filters are used as
a splitting technique and Prony’s method is used to solve for the non-filtered µi.

So here the classical FFT algorithm will appear as a special case, when
restricting the µi to integer values. In its most general form, with µi complex,
our formula is related to a comb filter. The former is the subject of the Sect. 2
and 3, while the latter is discussed in the Sect. 4 and 5.



2 Divide and conquer approach

In this section we assume for simplicity that Re(µi) 2 ZZ and we introduce
! = exp(2⇡i/N) with the integer N > 0. In addition we require that N divides
M , thus guaranteeing that M/N 2 IN. From our samples �(tj) we now deduce
N linear combinations �k(tj) by the construction [10, pp. 15–17]

�k(tj) :=
1

N

N�1X

`=0

!k`�(tj + `/N), k = 0, . . . , N � 1. (7)

These �k(tj) are linear combinations of already collected samples �(tj+M`/N )
since tj+`/N can be expressed as (j+M`/N)/M . Figure 1 graphically illustrates
formula (7). Each derived sample contains only some of the original components

Fig. 1: Formula (7) with M = 80 and N = 8.

of (1), as can be seen from the rearrangement

�k(tj) =
1

N

N�1X

`=0

!k`�(tj+M`/N )

=
1

N

N�1X

`=0

!k`
nX

i=1

↵i exp (2⇡iµi(j/M + `/N))

=
1

N

N�1X

`=0

!k`
nX

i=1

↵i exp(2⇡iµitj)!
`µi

=
1

N

nX

i=1

↵i exp(2⇡iµitj)

 
N�1X

`=0

!`(k+µi)

!
. (8)



We remark that

N�1X

`=0

!`(k+µi) = N if mod(k + µi, N) = 0,

N�1X

`=0

!`(k+µi) = 0 otherwise. (9)

So actually, every component of the original exponential sum (1) is present in
one and only one linear combination �k. When Re(µi) 2 ZZ formula (7) allows
a perfect split of (1) over N smaller sized problems. Since each �k has the
same exponential structure as (1), we can apply (4) or (5) to it and identify the
parameters ↵i and µi present in �k from the values �k(tj). And this for each
smaller exponential sum �k, k = 0, . . . , N � 1.

But (7) also remains valid for general µi 2 C as it is merely a linear combi-
nation of the samples taken at equidistant points. In Sect. 4 we see that, what
changes when going from Re(µi) 2 ZZ to µi 2 C, is that the factor

N�1X

`=0

!`(k+µi)

that accompanies each term in a particular �k(tj) is replaced by expression (13)
of which the behaviour is illustrated in Fig. 2.

Let us now discuss the number of terms in each of the �k and for this we first
consider the detection of n in (1) which we didn’t touch in Sect. 1. In an exact
(noisefree) context, the value of n can simply be detected from the theorems
given in [3, p. 603] and [11, pp. 20–31]:

detH(r)
n 6= 0,

detH(r)
⌫ = 0, ⌫ > n,

It is analyzed in [12] that when ⌫ < n, the value detH(r)
⌫ is not guaranteed zero

as for ⌫ > n, or guaranteed nonzero as for ⌫ = n, but can vanish accidentally
when by the choice of M and r one hits a zero of this expression. From these

statements the number of components n can be obtained as the rank of H(r)
⌫ for

⌫ > n. In order to inspect |H(r)
⌫ | for ⌫ > n, additional samples up to tr+2⌫�2

need to be provided, in other words at least the additional sample �(t2n) in case
r = 0 and ⌫ = n+ 1.

The smaller exponential interpolation problems built with the values �k(tj)
for each k separately, may contain less exponential terms and hence their Hankel
matrices

H
(r)
n,k =

0

B@
�k(tr) . . . �k(tr+n�1)

...
. . .

...
�k(tr+n�1) . . . �k(tr+2n�2)

1

CA



may have a rank smaller than n. For each k = 0, . . . , N � 1, the rank of H(r)
⌫,k is

less than or equal to n and the sum of these ranks equals exactly n.
We present a small example to illustrate the principle of (7). Let (1) be

defined by the values for ↵i and µi given in Table 1.

Table 1: Ill-conditioned example of (1).

Re(µi) 5 6 7 8 9 45 -10 -33

Im(µi) 0 0 0 0 0 0 0 0

| ↵i | 1 1 1 1 1 1 1 1

arg(↵i) 0 ⇡/4 ⇡/2 3⇡/4 ⇡ 5⇡/4 3⇡/2 7⇡/4

With M = 100 and n = 8 the Hankel matrix H
(0)
n has a condition number of

the magnitude 7.7⇥ 109! In [13] oversampling is used as a means to reduce the
condition number. Here we use (8) to split the exponential analysis problem and
bring the condition number down. We take N = 5. Each of the samples �k(tj)
for k = 0, . . . , 4 involves only a subset of the original components exp(2⇡iµitj),
as detailed in Table 2.

Table 2: Example from Table 1 split into N = 5 subsets.

k Re(µi) condition nr

0 5 45 -10 2.2⇥ 100

1 9 1.0⇥ 100

2 8 1.0⇥ 100

3 7 -33 1.4⇥ 100

4 6 1.0⇥ 100

The major improvement in the conditioning is not only due to the reduction
in size of the Hankel matrices involved, but also to a much better disposition in
the complex plane of the frequencies µi per subsum.

3 The FFT algorithm

An algorithm related to formula (7) is the FFT algorithm which retrieves the
coe�cients ↵i from a set of samples �(tj), j = 0, . . . ,M � 1 given by

�(tj) =
MX

i=1

↵i exp(2⇡iij/M). (10)



The di↵erence between (10) and (1) is that now all integer frequencies appear,
so µi = i, and that therefore the number of terms in the sum equals M , which
is also the number of samples. The coe�cients ↵i in (10) are called Fourier
coe�cients. In a way, (7) is a generalization of the FFT to sparse interpolation
or Prony’s algorithm as we now explain in some more detail.

Let M = N1 ⇥ · · · ⇥Nm with all Nk 2 IN. Then the FFT algorithm breaks
down the set of samples (10) into new di↵erent sets as follows. We detail the first
divide of �(tj) into N1 smaller exponential sums, starting from (8). For µi = i
and n = M , we find from (8):

�k(tj) =
1

N1

MX

i=1

↵i exp(2⇡iij/M)

 
N1�1X

`=0

!`(k+i)

!
, k = 0, . . . , N1 � 1

where

1

N1

N1�1X

`=0

!`(k+i)

evaluates to either 0 or 1. Preserving only the terms that are not multiplied by
zero, leads to

�k(tj) =

M/N1X

i=1

↵1+(i�1)N1+k exp(2⇡ij(1 + (i� 1)N1 + k)/M)

=

M/N1X

i=1

↵1+(i�1)N1+k exp(2⇡ijiN1/M) exp(2⇡ij(1�N1 + k)/M)

=

M/N1X

i=1

↵1+(i�1)N1+k exp(2⇡iij/(M/N1)) exp(2⇡ij(1�N1 + k)/M)

k = 0, . . . , N1 � 1 (11)

The subsequent step in which each smaller sum is divided into N2 new smaller
sums is obvious for k = N1�1, but the other �k first need to be multiplied by the
so-called twiddle factor exp(�2⇡ij(1�N1+k)/M) in order to bring them in the
correct form (1). For the subdivision of each of the N1 sums into N2 yet smaller
sums, one substitutes in (11) and the expression for the twiddle factors, M by
M/N1 and N1 by N2. In this way one continues until the algorithm has created
M sums each containing only one component of the form ↵i exp(2⇡iij/M). Thus
at the final stage each single component immediately reveals the coe�cient ↵i.

The case where M = 2m is of particular interest because then (8) and (11)
simplify even further (! = exp(⇡i) = �1) into

�k(tj) =
1

2

1X

`=0

(�1)`k�(tj + `/2), k = 0, 1.



4 An analog version of the splitting technique

We now consider a generalization of (7) when it does not make sense to re-
quire that the Re(µi) be integer, as we did in the discrete case. To this end we
introduce, in addition to ! = exp(2⇡i/N),

⌦ = !, |||| = 1.
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Fig. 2: The functions M4(1, µ)/N (left) and |M4(1, µ)/N | (right) for µ 2 [0, 5].

The samples �k(tj) derived from the samples �(tj) are then defined by the
following continuous analogon of (7):

�k(tj) =
1

N

N�1X

`=0

⌦k`�(tj + `/N)

=
1

N

N�1X

`=0

⌦k`
nX

i=1

↵i exp (2⇡iµij/M + 2⇡iµi`/N)

=
1

N

N�1X

`=0

⌦k`
nX

i=1

↵i exp(2⇡iµij/M)!`µi

=
1

N

nX

i=1

↵i exp(2⇡iµij/M)
N�1X

`=0

!`(k+µi) `k

=
1

N

nX

i=1

↵i exp(2⇡iµij/M)Mk(, µi), k = 0, . . . , N � 1, (12)

where Mk(, µ), for fixed N , is defined by

Mk(, µ) :=
1�

�
!k+µk

�N

1� !k+µk
. (13)



In case  = 1 formula (12) coincides with (8). However, the value of (13) does
not reduce to 0 or N as in (9). By (12) all integer frequencies Re(µi) are either
zeroed or copied to �k, as in (9), while the non-integer frequencies inbetween are
amplified as in Fig. 2, where we illustrate (12) for  = 1, N = 5 and Re(µi) 2
[0, 5]. The function Mk(, µ) is periodic, and in Fig. 2 the period equals 5. The
e↵ect on the integer frequencies µ = i, i = 0, . . . , 5 is accentuated in the graph
at the bottom in Fig. 2.

The complex number  = exp(2⇡i✓) on the unit circle acts as a continuous
shifter of Re(µi), as shown in Fig. 3. Increasing k to k + 1 in (7) can also be
achieved by choosing  = exp(2⇡i/N) in (12).

A

y
Fig. 3: Influence of the parameter  while N and ! are kept equal in both Mk graphs.

Table 3: Analog divide and conquer illustration.

Re(µi) 5 6 7.3 8 9.5 45 -10 -33

Im(µi) 0 0 -0.1 0 -0.001 0 0 0

| ↵i | 1 1 1 1 1 1 1 1

arg(↵i) 0 ⇡/4 ⇡/2 3⇡/4 ⇡ 5⇡/4 3⇡/2 7⇡/4

We repeat the example of Sect. 2 where the data have now been altered
so that Re(µi) 62 ZZ and Im(µi) 6= 0. The new data can be found in Table 3.
We take a look at �4(tj) given by (7) and (12) but with the µi from Table 3
and with  = 1. The components in �4(tj) are now multiplied by M4(1, µi)/N .
So none of the non-integer frequencies is annihilated. The µi with non-integer
real parts are weakened in modulus as indicated in Table 4. By repeating the



Table 4: Analysis of �4(tj) for µi from Table 3.

Re(µi) 7.3 9.5

Im(µi) -0.1 -0.001

| ↵iM4(1, µi)/N | 0.1361 0.6456

mutiplication with M4(1, µi)/N this e↵ect is strengthened. In order to retrieve
the correct ↵i, the coe�cient of exp(2⇡iµij/M) in �4(tj) which can be obtained
using a standard exponential analysis needs to be multiplied by N/M4(, µi).
The e↵ect of M4(1, µ) is graphically illustrated in Fig. 4.

Fig. 4: E↵ect of the function M4(1, µ)/N on the frequencies in Table 3.

5 Connection to FIR filters

We want to illustrate how formula (12) can be interpreted as the result of a
digital filter. In general, a digital filter takes a set of samples as input, applies
a transform and delivers another set of samples as output. In a finite impulse



response or FIR filter the output samples are a linear combination of the present
and previous input samples. If we denote the filter coe�cients by �` and the
sampling distance is 1/M , then the filtered signal  (tj) equals

 (tj) =
L�1X

`=0

�`�(tj � `/M).

When the input signal is the unit impulse �(·) where � is the Kronecker delta
function, then the output signal is called the impulse response h(tj) given by

h(tj) =
L�1X

`=0

�`�(tj � `/M) = �j , tj = j/M.

The transfer function associated with the FIR filter  equals

H(z) =
L�1X

`=0

�`z
�`.

In order to establish a link with formula (12), we define for k fixed and ` =
0, . . . , L� 1 = M � 1, (remember that N divides M),

�`k :=

8
<

:

1

N
⌦k(N�(`+1)/(M/N)), (`+ 1)/(M/N) 2 IN

0, otherwise.

When putting the �`k for fixed k in a vector, they are structured in N blocks of
size M/N , each block containing M/N � 1 zeroes and one power of ⌦k:

1

N

⇣
0, . . . , 0,⌦(N�1)k, 0, . . . , 0,⌦k, 0, . . . , 0,⌦0

⌘

Since formula (12) is based on the current and future samples, we also need to
shift the signal in order to fit the filter description:

�(tj) := �(tj + (1� 1/M)).

Then

 (tj) = �k(tj) =
M�1X

`=0

�`k�(tj � `/M). (14)

The impulse response of the filter (12), rewritten as (14), is given by

hk(tj) = �jk.

The filter (12) gets a crisper look, meaning that it is flatter in the neighborhood
of the zeroes and exhibits a sharper peak where it attains one, when applied
iteratively. In Fig. 5 we show the result of (12) applied once (as in Fig. 2), twice
and five times, reminding us more and more of a comb filter [14, p. 474].



Fig. 5: FIR filter (12) applied once, twice and five times.

6 Conclusion

Sparse interpolation, which is a special case of multi-exponential analysis, can be
combined with a divide and conquer technique which is a direct generalization of
the fast Fourier transform algorithm in case the frequencies belong to a discrete
set. This connection opens up new computational possibilities in the fitting of
sparse models to data.

An analog version of our general divide and conquer method is related to
digital filter theory, more precisely FIR filter theory.
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