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Analysing textures with exponential analysis
Deepayan Bhowmik, Yuan Hou, Annie Cuyt and Wen-shin Lee

Abstract—A majority of the visual pattern recognition tasks
involve texture analysis within its processing pipeline. One of
the key steps for texture analysis is the frequency decomposition
of the input signal. We present a new approach using a recent
2-dimensional exponential analysis technique that can provide
a basis for several vision algorithms. Exponential analysis (EA)
offers the advantage of sparsity in the model and continuity in the
parameters. This results in a much more compact representation
of textures when compared to traditional Fourier or wavelet
transform techniques, especially when the texture patterns are
homogeneous and follow an underlying real or complex expo-
nential model.

In support of our proposed method, extensive experiments
are conducted using synthetic as well as real texture images
from standard benchmark datasets. The results outperform
the Discrete Fourier Transform (DFT) in representing texture
patterns, with significantly fewer terms, while retaining RMSE
values after reconstruction. To demonstrate the usefulness of
our method, we develop a new fabric defect detection algorithm
which exhibits very acceptable performance measures. Additional
demonstration of a texture classification method illustrates the
potential for a wider adaptation of the proposed texture decom-
position approach.

Index Terms—Exponential analysis, multivariate, texture de-
composition, fabric defect detection, texture classification.

I. INTRODUCTION

Frequency decomposition is a fundamental but challenging
inverse problem to most image and signal processing appli-
cations. Such applications include visual pattern recognition
tasks that involve texture analysis using frequency decom-
position within its pipeline to extract meaningful features.
Major frequency decomposition approaches can be categorised
into 1) template based convolution methods, e.g., Fourier [1],
cosine [2] or wavelet transforms [3], [4] and 2) data driven
adaptive approaches, e.g., empirical mode decomposition
(EMD) [5], [6] or empirical wavelet transform (EWT) [7], [8].
Template based transforms are considered to be rigid and rely
on predetermined basis functions or frames that are agnostic
of the input image. On the contrary, adaptive techniques are
flexible and can provide a better representation of the data.
One common challenge across all these methods is the model
cardinality of the frequency domain representation, which is
often dictated by the available data granularity. Also, the
mentioned techniques do not exploit in any way the structure
present in the available data, such as in texture data. While
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fine grained transform domain representations are required for
image reconstruction purposes, it is not always necessary for
many applications, such as in texture pattern recognition. This
paper proposes a new image decomposition technique using
the recent multivariate exponential analysis of [9], with the aim
to decompose texture images using a minimal representation.

In the past few years, multidimensional exponential analysis
has attracted considerable attention in computational mathe-
matics as well as in signal processing. In the 1-dimensional
case, the Prony-like exponential analysis methods, such as
matrix pencil [10], ESPRIT [11], TLS-Prony [12], MUSIC
[13] have all been successfully applied in solving many prac-
tical problems. At the same time, several multi-dimensional
versions of these Prony-like methods have been developed,
e.g., [14]–[19]. However, due to complexity issues, until
recently these methods were not very suitable to serve as a
general tool for higher-dimensional decomposition.

In [9], a d-dimensional exponential model of n terms can be
recovered from O((d+1)n) regularly collected samples, which
is substantially less than with other multi-dimensional Prony-
like methods, where both the sample usage and computational
complexity explode exponentially. This opens a wealth of
possibilities, including certain image processing applications.
Texture is a fundamental component of any image and is
encountered in most image analysis problems. Therefore, it
is no surprise that it is a very intensively researched area [20].

This paper explores the use of the multivariate exponen-
tial analysis presented in [9] as a new image decomposi-
tion technique that can express regular texture patterns with
substantially fewer parameters. The key focus of this work
constitutes of the mathematical formulation of a new de-
composition technique validated on both synthetic and real
images available from benchmark data sets. Usefulness of the
proposed approach is demonstrated by a new fabric defect
detection algorithm. Further usage scenarios include a texture
classification application, illustrating the potential for a wider
applicability. The main contributions of our work are:

● Formulation of multivariate exponential analysis as a new
image decomposition tool for texture analysis,

● Sparse image representation and reconstruction using
only a limited number of terms,

● Development of a new fabric defect detection algorithm
that uses the proposed decomposition tool, and

● Demonstration of exponential analysis in the case of
texture classification.

The initial concept and early results of this approach were
reported as a conference publication [21]. This work extends
it by presenting the details of our approach, discusses extended
results, and proposes an updated fabric defect detection algo-
rithm with performance comparison against the state-of-the-
art.
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Fig. 1: DFT versus EA of a bi-exponential signal. Top left to
right: original signal, DFT reconstruction, EA reconstruction.
Bottom left to right: frequency content of original, DFT
frequency analysis, EA frequency analysis. EA recovers this
signal from only 4 measurements and provides the two signif-
icant frequencies.

II. PRELIMINARIES

Exponential functions are one of the fundamental objects in
linear and non-linear models for extracting relevant structures
from measured data. The objective in basic univariate multi-
exponential analysis is to recover the coefficients αj and the
exponents φj in the parametric multi-exponential sum

f(t) =
n

∑
j=1

αj exp(φjt), αj , φj ∈ C (1)

from a limited number of samples of f(t). In the ideal noise-
free situation this number is known to be a mere 2n. Often,
also n is unknown and needs to be determined on the fly.
Many generalisations of the basic problem statement exist. As
illustrated in Fig. 1, the approach of EA compared to that
of the DFT is quite distinct although both use exponential
functions as a building block for their spectral analysis:

● the DFT frequency resolution is a function of the sam-
pling duration, so of time,

● and its frequency set is a predetermined discrete grid, thus
causing leakage when φj does not match the grid,

● and its frequency set is a predetermined discrete grid, thus
causing leakage when φj does not match the grid,

● while the number of required samples in EA depends on
the sparsity n of f(t),

● and the method supports continuity in the spectral anal-
ysis output for φj .

Let us denote the imaginary part of a complex number
by I(⋅) and let f(t) be sampled equidistantly at k∆, k =

0,1,2, . . . with

∣I(φj)∆∣ < π, j = 1, . . . , n

in order to comply with the Nyquist sampling constraint. Let
H
(m)
n denote the n × n Hankel matrix

H(m)n =
⎛
⎜
⎝

fm ⋯ fm+n−1
⋮ ⋰ ⋮

fm+n−1 ⋯ fm+2n−2

⎞
⎟
⎠
, fk = f(k∆).

We further introduce Ej = exp(φj∆) which we assume to be
distinct. How to deal with the coalescence of some of these
values is discussed in [22]. Because of the inherent structure

(1) which holds at each of the sample points fk, the matrix
H
(m)
n can be factored as

H(m)n = VnDαD
m
E V

T
n ,

where Vn is the Vandermonde matrix

Vn = (E
i−1
j )

n

i,j=1
and Dα and DE are diagonal matrices respectively filled with
the vectors (α1, . . . , αn) and (E1, . . . ,En). This factorisation
is easy to verify directly by performing the matrix product
at the right hand side and compare the matrix entries in the
product to those of the Hankel matrix. So the Ej , j = 1, . . . , n
can be found as the generalized eigenvalues λj , j = 1, . . . , n
of the problem [10]

H(1)n vj = λjH
(0)
n vj , (2)

where the vj , j = 1, . . . , n are the right generalized eigenvec-
tors. Setting up (2) requires only the 2n samples f0, . . . , f2n−1.
From the generalized eigenvalues Ej = exp(φj∆) the complex
values φj can be extracted uniquely because ∣I(φj)∆∣ < π.
After recovering the Ej , the αj can be computed from the
Vandermonde structured linear system

n

∑
j=1

αjE
k
j = fk, k = 0, . . . ,2n − 1, . . . (3)

In a noisefree mathematical context, only n equations of
(3) are linearly independent because of the relationship (2)
between the Ej . How to reliably proceed in a noisy context
is analyzed in great detail in [23]. Generally speaking, when
dealing with noisy data, the sparsity n is overestimated by
η > n and the minimum number of required samples 2η is
again overestimated by N > 2η > 2n. The square n × n
numerical linear algebra problems (2) and (3) then take the
sizes (N −η)×η and N ×η respectively and are solved in the
least squares sense. Often the least squares solution of (2) is
preceded by a rank reduction step of the (N − η) × η Hankel
matrices, thus reducing the value of η to a smaller value before
solving the overdetermined versions of (2) and (3). When n
cannot be determined through other means (see [24] and [23])
then this reduced value of η takes the role of n. With respect to
the conditioning of the (N − η)× η Hankel matrices, η ≈ N/3
makes a good choice.

In image processing the argument φjt of the exponential
function in (1) is replaced by the inner product ⟨φj , p⟩ as in
(4), where φj = (φjx, φjy) and p = (x, y) is the pixel location
in the image.

III. EXPONENTIAL IMAGE ANALYSIS

We approach image decomposition as a two-dimensional
exponential analysis problem. That is, we seek to determine
n and retrieve αj , φjx, φjy ∈ C from as few evaluations of

f(x, y) =
n

∑
j=1

αj exp(φjxx + φjyy), (4)

as possible, where (x, y) is the location of a pixel and f(x, y)
the value at the corresponding pixel. When f(x, y) is periodic
such as in some textures, and can be decomposed as a linear
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combination of undamped sine and cosine functions, then φjx
and φjy are purely imaginary. Here we allow for more general
images.

The method we present is based on the new sparse al-
gorithms [9], [23] requiring only O(3n) samples to analyze
(4). We first summarize the 2-d idea explained in [9], and
afterwards we explain how it is combined with the 1-d
technique of [23].

A. Basic idea

Let ∆ = (∆x,∆y) /= (0,0) and δ = (δx, δy) /= (0,0) be
linearly independent, with

∣I(φjx∆x + φjy∆y)∣ < π, j = 1, . . . , n,

∣I(φjxδx + φjyδy)∣ < π, j = 1, . . . , n, (5)

and let the values exp(φjx∆x + φjy∆y), j = 1, . . . , n be
mutually distinct. How to deal with non-distinct values is
discussed in [9] and summarized further down. We sample
f(x, y) at the equidistant points k∆ and some shifted locations
k∆ + δ:

fk ∶= f(k∆x, k∆y), k = 0, . . . ,2n − 1,

Fk ∶= f(k∆x + δx, k∆y + δy), k = 0, . . . , n − 1.

Then first, the expressions exp(φjx∆x + φjy∆y), j = 1, . . . , n
are retrieved as the generalized eigenvalues λj of

⎛
⎜
⎜
⎜
⎝

f1 f2 ⋯ fn
f2 ⋯ fn+1
⋮ ⋮

fn fn+1 ⋯ f2n−1

⎞
⎟
⎟
⎟
⎠

vj =

λj

⎛
⎜
⎜
⎜
⎝

f0 f1 ⋯ fn−1
f1 ⋯ fn
⋮ ⋮

fn−1 fn ⋯ f2n−2

⎞
⎟
⎟
⎟
⎠

vj , (6)

where the vj denote the right eigenvectors. Several numerical
methods exist for the solution of this problem, among which
[10]–[12], [23] used in Section V. Because of (5) we can
uniquely retrieve the inner products

Φj ∶= ⟨φj ,∆⟩, φj = (φjx, φjy), j = 1, . . . , n

from the computed λj = exp(Φj). We’re not yet able to
recover the individual φjx and φjy though.

Second, we rewrite the values Fk as

Fk =
n

∑
j=1

αj exp(φjxδx + φjyδy) exp(kΦj)

=
n

∑
j=1

Aj expk(Φj), Aj ∶= αj exp(φjxδx + φjyδy)

and we introduce the notations α ∶= (α1, . . . , αn)
T ,A ∶=

(A1, . . . ,An). We solve the linear systems of interpolation
conditions

⎛
⎜
⎜
⎜
⎝

1 ⋯ 1
exp(Φ1) ⋯ exp(Φn)

⋮ ⋮

exp2n−1(Φ1) ⋯ exp2n−1(Φn)

⎞
⎟
⎟
⎟
⎠

α =
⎛
⎜
⎝

f0
⋮

f2n−1

⎞
⎟
⎠
, (7)

and

⎛
⎜
⎜
⎜
⎝

1 ⋯ 1
exp(Φ1) ⋯ exp(Φn)

⋮ ⋮

expn−1(Φ1) ⋯ expn−1(Φn)

⎞
⎟
⎟
⎟
⎠

A =
⎛
⎜
⎝

F0

⋮

Fn−1

⎞
⎟
⎠

(8)

and define exp(Ψj) ∶= Aj/αj = exp (⟨φj , δ⟩) , j = 1, . . . , n.
Note that we have no problem to pair the Ψj to the Φj , j =
1, . . . , n since the Aj are paired to the αj , j = 1, . . . , n through
the Vandermonde systems (7) and (8).

The fact that the vectors ∆ and δ are linearly independent
leads for each j = 1, . . . , n to the regular linear system

(
∆x ∆y

δx δy
)(
φjx
φjy
) = (

Φj
Ψj
) (9)

from which the individual φjx and φjy can be obtained.
So all unknown parameters in (4) can be retrieved at the

expense of 2n evaluations fk and n evaluations Fk, or a mere
total of 3n samples. In practice, when dealing with noisy real-
life data, the value of n is overestimated by η > n. Moreover,
the minimal number of 3η = 2η + η required samples for an
η-term model of the form (4) is often again overestimated by
N + n with N ≥ 2η and n ≥ η. The square n × n generalized
eigenvalue problem (6), the 2n × n Vandermonde system (7)
and the n×n Vandermonde system (8) then respectively take
the sizes (N −η)×η,N ×η and n×η and are all solved in the
least squares sense. Often the generalized eigenvalue step is
combined with a rank reduction step of the Hankel matrices
to size (N − η) × η̃ where n < η̃ < η. Then in the generalized
eigenvalue problem (6), the Vandermonde systems (7) and (8),
the number of columns η is everywhere replaced by η̃.

B. Allowing coalescent inner products

We now describe how to proceed when some of the values
exp(Φj), j = 1, . . . , n collide and the exponential sum there-
fore shrinks to t < n terms. Such collisions or near-collisions
happen easily since Φj is the projection of the vector φj on
the vector ∆. Without loss of generality, we assume that the
colliding terms are successive:

exp(Φ1) = . . . = exp(Φn1),

exp(Φn1+1) = . . . = exp(Φn2),

⋮

exp(Φnt−1+1) = . . . = exp(Φn),

with n0 = 0 and nt = n. The samples fk then equal

fk =
t

∑
j=1

⎛

⎝

nj

∑
h=nj−1+1

αh
⎞

⎠
exp(Φnj)

and the unknown coefficients in the now t × t linear systems
(7) and (8) become respectively

αj ,1 ≤ j ≤ n→
nj

∑
h=nj−1+1

αh,1 ≤ j ≤ t,

Aj ,1 ≤ j ≤ n→
nj

∑
h=nj−1+1

αh exp(Ψh),1 ≤ j ≤ t.
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To disentangle these coefficients and retrieve the individual
α1, . . . , αn and Ψ1, . . . ,Ψn we need to repeat the shift proce-
dure. Let us therefore collect samples at the shifted locations
k∆ + `δ for more values of `:

Fk` = f(k∆x + `δx, k∆y + `δy),

` = 1, . . . , s − 1, k = 0, . . . , t − 1 (10)

with s ≥ 2 maxj(nj −nj−1) and Fk1 = Fk. Since neither t nor
s are actually known, their value is in practice overestimated
again. We introduce the notation A(`) = (A(`)1 , . . . ,A

(`)
t ) with

A
(0)
j ∶=

nj

∑
h=nj−1+1

αh,

A
(`)
j ∶=

nj

∑
h=nj−1+1

αh exp(`Ψh), ` = 1, . . . , s − 1,

(11)

and replace (8) by the s − 1 linear systems of size t × t,

⎛
⎜
⎜
⎜
⎝

1 ⋯ 1
exp(Φ1) ⋯ exp(Φt)

⋮ ⋮

expt−1(Φ1) ⋯ expt−1(Φt)

⎞
⎟
⎟
⎟
⎠

A(`) =
⎛
⎜
⎝

F0,`

⋮

Ft−1,`

⎞
⎟
⎠
,

` = 1, . . . , s − 1. (12)

For fixed j, the solutions A(`)j , ` = 0, . . . , s − 1, where A(0)j
is computed from (7) with its size reduced to t × t and the
A
(`)
j , ` = 1, . . . , s − 1 are obtained from (12), provide values

for an exponential analysis problem in its own right, as can be
seen from (11). In the least squares version which is used when
dealing with noisy data and t is overestimated, the systems (7)
and (12) respectively take the size N × η and n× η. Applying
the basic technique from Section III-A reveals all unknowns
and delivers the right hand sides for the 2 × 2 systems (9)
where we let j run from 1 to n.

Since the vectors ∆ and δ are linearly independent, it is
impossible for distinct j and k to have Φj = Φk and Ψj = Ψk

without having φj = φk which are assumed distinct in (4). So
we are sure that all terms are disentangled after performing
and analyzing the s − 1 shifts in (10).

C. Numerical computation

In what follows, we deal with 512×512 textures, which we
extract from the central part of the image (if the input image
is smaller then it is enlarged to 512×512 by interpolation). We
choose the following values for the parameters: ∆ = (1,0), δ =
(0,1), s = 512, t = 33, η = 170,N = 512,n = 512. This
choice is merely inspired by the size of the image and the
consideration that η ≈ N/3 works well for (6). As mentioned,
we use a combination of the matrix pencil method studied
in [10] with the rank reduction step described in [11] for the
solution of (6), which constitutes the first step of the algorithm.
We call this method the TLS-Prony method (as in [12]),
because the first numerical method to perform exponential
analysis was published by the French nobleman de Prony in
1795 [25]. In the second step of the algorithm, we analyze
the Prony problem given in (11) using the decimated Prony-
type algorithm presented in [23], with a decimation factor

equal to 4. The use of decimation allows to build in some
validation of the result, which is useful as the exp(Ψj) are
in general less accurate than the exp(Φj). The reason for this
is that the various exp`(Ψj) are obtained from solutions of
the rather sensitive Vandermonde systems (12) and (8). The
chosen decimation factor also reduces the system size of (6)
from (N − η) × η to 75 × 53.

Similar to the thresholding that is performed on the DFT
coefficients, we clean up the set of parameters computed
so far. First of all, we project both exp(Φj) and exp(Ψj)

on the unit circle. Second, we discard the terms with small
amplitude, meaning either with ∣αj ∣ < 0.002 (for the images
termed chequered) or with ∣αj ∣ less than maxj ∣αj ∣/160 (for
the images termed woven). After discarding these terms the
coefficients αj of the surviving terms are recomputed from the
allover interpolation conditions

n

∑
j=1

αj exp(φjxk + φjy`) = f(k, `), k, ` = 0, . . . ,511.

(13)

Finally, the resulting small amplitudes are discarded once more
and the final αj are recomputed from (13). At this moment
the true value of n is revealed.

The thus resulting φj = (φjx, φjy) computed from (9) can
for instance be found in the second rows of Fig. 2 (synthetic
image analysis) and Fig. 3 (real image analysis), where they
are indicated by means of a red bullet. A comparison of the
exponential frequency analysis output to the DFT spectrum,
which is shown in both figures using green bullets, clearly
confirms that the representation (4) is much sparser, while
retaining a similar expressiveness. We point out that even for
the DFT coefficients, in each image those coefficients that are
in magnitude below 10−2.5 of the largest DFT coefficient are
discarded to reduce the model complexity in the frequency
space. In Fig. 2 where we deal with noisefree synthetic images
(see appendix A for the parameters αj , φj , n), the original
image content is entirely retrieved by our method, as confirmed
in Table I. In the respective rows 3 and 4 of both Fig. 2
and Fig. 3, image reconstructions based on both DFT and EA
spectra are shown. The RMSE values and cardinality of the
models used for the reconstructed images are again listed in
Table I.

IV. APPLICATIONS IN COMPUTER VISION

In Section III we derived the compact texture representation
using exponential analysis and showed that original texture
patterns can be reconstructed from a limited number of avail-
able samples. Those representations are valuable in many com-
puter vision applications where the extraction of meaningful
features is important. In this work we develop new algorithms
to demonstrate two exemplar computer vision applications: 1)
fabric defect detection and 2) texture classification.

A. Fabric defect detection

Generally, defect detection is an important but challenging
task in computer vision applications [26] including indus-
trial material inspection and fabric production [27]. We are
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Algorithm 1: Fabric defect detection using EA.
Input: I: Fabric pattern (gray scale image)
Output: D: Defect detection mask (binary image)

1 for i← I0 to IN , do
2 S ← exponential(I) ; // Sparse

exponential terms.
3 R ← reconstruction(S) ; // Texture image

reconstruction.
4 Q←multissim(R, I) ; // Quality map of

multi-scale SSIM.
5 Qbw ← binarize(resize(Q{3})) ; // Resizing

and binarization of mid-scale Q
map.

6 ME ← erode(Qbw, se1) ; // Erosion with
structural element se1 (radius 1).

7 MD ← dilate(ME , se2) ; // Dilation with
structural element se2 (radius 10).

8 MC ← clearborder(MD) ; // Suppresses
lighter structures which are
connected to the border.

9 D ← remove SO(MC , P ) ; // Remove small
objects (SO) with less pixels
P = 50.

10 end
11 E ← evaluation metric(D,I) ; // Calculate

statistics such as detection success
rate, true positive rates (TPR) etc.

particularly interested in fabric defect detection due to its
wider applicability in the textile industry. In fact the demand
of vision based automated fabric inspection attracts many
researchers and practitioners in the manufacturing quality
control automation domain [28]–[31].

State-of-the-art algorithms often rely on machine learning
including deep learning based approaches that require large
training data sets. As an alternative approach, we propose
exponential analysis to represent the texture with limited
model complexity, then reconstruct and compare with the input
image in order to identify the defect within the pattern. The
different steps constituting the proposed algorithm are shown
in Algorithm 1. In identifying the differences between the
input and the reconstructed images, firstly, we apply the Multi-
Scale Structural Similarity Index Measure (MS-SSIM) through
which a quality map is generated at different scales [32].
We use the mid-scale quality map to produce a difference
image which in turn allows to detect and localise any defect(s)
in the input texture pattern. We employ a couple of post-
processing operations to create a clean binary defect mask.
The post processing operations mainly include morphological
operations such as erosion and dilation. The detected binary
defect mask is then compared to the ground truth to produce
evaluation statistics such as detection success rate, true positive
rates etc. Details of these evaluation metrics, benchmark
datasets and the results are described in Section V-C. It is
worth noting that our approach does not require any machine
learning steps, training data and hence will be of use to many

Algorithm 2: Texture classification using EA.
Input: I,A: Texture image, actual class.
Output: P : Predicted class.

1 TS ← 150 ; // TS = number of exponential
terms for feature vector formation.

2 for i← I0 to IN , do
3 pre processing() ; // Resizing to

512 × 512 and gray scale conversion.
4 S ← exponential(I) ; // Sparse

exponential terms.
5 SR ← rank order(S) ; // Rank order S

based on descending amplitudes.
6 if length(S) < TS then
7 SR ← SR + zero padding;
8 else
9 SR ← SR(1 ∶ TS);

10 end
11 FTR ← concatenate(SR); ; // Size of

feature vector FTR = 70 ∗ 5 = 350.
12 end
13 mdl =KNN(FTR,A,K = 5); // Train KNN

classifier.
14 FTS ← Repeat(line 3 − 13) ; // Create

feature vector for test.
15 P ← predict(FTS) ; // Predict classes for

test images.
16 E ← evaluation metric(A,P ) ; // Calculate

statistics, e.g., confusion matrix.

similar applications.

B. Texture classification

We also explore the usage of our new decomposition tool in
texture classification. Texture analysis is fundamental to most
vision applications. Texture representation and classification
are essential parts of the processing pipeline and are researched
widely [20], [33], [34]. Our argument is that using the pro-
posed exponential image analysis, texture can be represented
compactly and used in feature engineering.

We build an imaging pipeline to extract the features. The
steps of this pipeline are shown in Algorithm 2. Firstly,
the input images are pre-processed which includes resizing
and gray-scaling, followed by the estimation of a sparse
exponential model as discussed in Section III. Five feature
points, constituting of the amplitude modulus ∣αj ∣ and both
real and imaginary part of the expressions exp(⟨φj ,∆⟩) and
exp(⟨φj , δ⟩), are used to represent each term in (4). We
concatenate these terms to generate the feature vector which
is the input to a machine learning classifier such as K-nearest
neighbour (KNN) which is used in this demonstrator with
K = 5. As the estimated sparsity n of the exponential model
relies on the input texture pattern, the method produces vari-
able length feature vectors which are unsuitable for machine
learning classifiers. To address this, we empirically set the
number of exponential terms to be used in the feature vector.
Either zero padding is applied whenever there are less terms
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DFT Ours Gain

# Terms RMSE # Terms RMSE (%)

Synthetic images

IM#1 111 0.0169 11 0.0012 90%
IM#2 231 0.0258 11 0.0015 95%
IM#3 279 0.0285 11 0.0011 96%
IM#4 163 0.0215 11 0.0011 93%
IM#5 279 0.0235 11 0.0011 96%

Real images from Oxford DTD dataset, category: woven

001 1835 0.0469 167 0.0743 91%
003 793 0.0756 187 0.0780 76%
028 867 0.0562 163 0.0700 81%
038 1619 0.0723 159 0.1036 90%
064 4557 0.1100 107 0.1712 98%

TABLE I: Comparison of image decomposition using DFT and
the proposed exponential analysis on synthetic and real images
with respect to the number of terms to represent the texture,
RMSE when reconstructed and % gain in model reduction.

or the model is truncated keeping the most significant terms
in case there are more. We evaluate the performance on a
benchmark data set and describe the results in Section V-D.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS1

To validate the proposed exponential analysis we perform
experiments on both synthetic and real texture images and
compare against DFT results, thus demonstrating the use and
advantages of sparsity in the frequency domain. We also apply
our method in common vision applications that require texture
analysis, e.g., fabric defect detection and texture classification.
Within the scope of this work, our model considers only
homogeneous patterns across the image and therefore does
not work effectively on textures with multiple patterns.

A. Synthetic images

Following model (4), we generate five synthetic textures
each containing 11 terms, the parameters of which are shown
in Appendix A. We compare the exponential analysis results
against DFT. For both, these results are used to reconstruct
the images and compute root mean square error (RMSE)
values. The results are shown in Fig. 2 and Table I. The
proposed exponential analysis does not need prior knowledge
on the number of terms and the validation step can threshold
the unrelated terms automatically, which provides a reliable
estimate of the total number of terms. As illustrated in Table I,
the proposed method correctly retrieves the 11 exponential
terms in the synthetic image, which significantly reduces
the model complexity (more than 90% coefficient reduction
against DFT) and guarantees a near perfect reconstruction (low
RMSE).

B. Real texture images from benchmark dataset

Encouraged by the nice results for the synthetic images,
we also conduct experiments with samples from the standard

1Code will be made available as open source code for reproducibility.

Oxford Describable Textures Dataset (DTD, category: wo-
ven) [35]. Similar to Section V-A, we compare the proposed
methodology against the thresholded DFT in terms of number
of coefficients and RMSE of the reconstructed image. The
results are shown in Fig. 3 and Table I. The proposed method
outperforms the DFT representation with fewer terms while
retaining the RMSE values. However, our method does not
work well in woven 0064 or other images where the texture
information is not sparse or consists of multiple patterns. This
is due to the basic assumption of our model on sparsity and
homogeneity, meaning exponential behaviour as in (4).

C. Fabric defect detection
In order to evaluate the new fabric defect detection algo-

rithm, we test it on a publicly available benchmark dataset and
compare with a recent Elo rating (ER) based method [28]. The
dataset was developed by the Industrial Automation Research
Laboratory, Dept. of Electrical and Electronic Engineering,
The University of Hong Kong [36]. In this work we have
used defected fabric texture images for two patterns: box and
star. Both of them have five defect categories: Thin Bar, Thick
Bar, Netting Multiples, Broken End and Hole. There are five
samples in each category except Thick Bar in Box pattern
which has six. In total we have experimented with 26 fabric
samples from Box patterns and 25 samples from Star patterns.

In line with the reference ER method, five objective metrics
are used in this work including detection success rate (DSR),
true positive rate (TPR), false positive rate (FPR), positive
predictive value (PPV), and negative predictive value (NPV)
using the measurements such as true positive (TP), false
positive (FP), true negative (TN) and false negative (FN).
Pixel-wise comparisons are made between the Ground Truth
(GT) and the detection output from our method. Objective
metrics are calculated as

DSR = (TP + TN)/(TP + FN + FP + TN),
TPR = TP/(TP + FN),
FPR = FP/(FP + TN),
PPV = TP/(TP + FP),
NPV = TN/(TN + FN).

We have obtained two sets of results: a) visual results are
shown in Fig. 4 and b) objective metrics with comparison
are presented in Table II. We have shown samples from each
category (row 1) for both patterns, the ground truth (row 2) and
our detection results (row 3). Our method works well across
the board and exhibits a closer match with the ground truth.
Objective measures (represented as %) indicate acceptable per-
formance for all categories and generally better performance
when compared to the ER method [28]. Overall performances
which are the averages of all categories show improvement
over ER. Considering that our method does not depend on
any training data, it has substantial potential where machine
learning based approaches are not appropriate due to the lack
of available samples. We like to stress that, the proposed fabric
defect detection algorithm is only a demonstrator within the
scope of this paper and can be further optimised by tuning the
parameters and additional pre- and post-processing.
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Fig. 2: Exponential analysis and comparison with DFT for synthetic noise-free images. Rows 1-4: original, exponential frequency
analysis (φj in ● overlaid on DFT frequency spectrum in ●), reconstruction from thresholded DFT and reconstruction from
exponential terms (EA) following (4).

D. Texture classification

We evaluate the texture classification on the publicly avail-
able Oxford Describable Textures Dataset (DTD) [35] that
provides real world example images. As this demonstrator
is a proof of concept we only choose a subset: categories
chequered and woven which are relatively more aligned with
the exponential analysis expectations, i.e., the underlying tex-
ture pattern is homogeneous and periodic. All 160 images
(80 in each category) are used in the experiment, with a
random 70%− 30% (56− 24) training and testing split. Other
parameters such as the number of exponential terms to form
the feature vector (TS = 70) or KNN classifier parameters
(K = 5) are in line with the description in Algorithm 2. As
each EA term constitutes of five feature points, the total feature
vector length is 70 × 5 = 350. For evaluation purposes we
generate the confusion matrix and overall accuracy.

Two sets of results are produced: a) visual results are shown
in Fig. 5 and b) the confusion matrix is shown in Fig. 6.
Visual results show examples of textures from the dataset
used for the machine learning training, as well as correct
and incorrect classifications. The confusion matrix indicates
a higher classification accuracy for chequered (83.3%) com-
pared to woven (66.7%) with an overall accuracy of 75.0%.
Given the complexity of the real image textures, the proposed
method works reasonably well, especially when the texture
has a regular periodic pattern as in the chequered category.

To benchmark the performance of our approach, we also
present the confusion matrix for the classification task using
typical Speeded Up Robust Features (SURF) [37]. In this
case we use the 100 strongest SURF feature points with an
overall feature length of 100 × 64 = 6400 and preserve all
other experimental set up, i.e., same training and test data set,
same KNN classifier with K = 5. Results are shown in Fig. 6
with an overall accuracy of 70.8%. In case of SURF, woven
category works well due to the availability of stronger feature
points.

The proposed exponential analysis based texture classifi-
cation method achieves acceptable/better performance even
with a significantly lower number of features (approximately
18 times less) when compared to SURF. This demonstrates
the potential for a wider adaptation of exponential analysis
in computer vision tasks. In its current form, the proposed
approach is limited to regular texture patterns and therefore
cannot process well any heterogeneous images. Future work
includes the extension of the current approach to accommodate
a wider set of images.

VI. CONCLUSIONS

This paper proposes a new image decomposition method
using 2-d exponential analysis. We exploit key properties
of exponential analysis, such as sparsity in the data fitting
problem and continuity in the frequency space. The proposed
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Fig. 3: Exponential analysis and comparison with DFT for real-life images. Rows 1-4: original, exponential frequency analysis
(φj in ● overlaid on DFT frequency spectrum in ●), reconstruction from thresholded DFT and reconstruction from exponential
terms following (4).

analysis results in a compact image representation in the
frequency domain with significantly fewer coefficients. Ex-
perimental results outperform the classical DFT, ER in defect
detection and SURF in texture classification, for both synthetic
and real texture images and indicate new opportunities in the
image processing domain.

The usefulness of our method is illustrated with two
common vision applications, defect detection and texture
classification, which are central components of many image
processing algorithms. In particular, we propose a new algo-
rithm for fabric defect detection which shows very acceptable
performance on a benchmark dataset. Representing images
with fewer terms will be beneficial for feature engineering
in vision and can lead to better accuracy and a more effi-
cient computation. We anticipate that the proposed EA based
method can be part of a larger image processing pipeline and
can benefit from pre- and post-processing optimisations.
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Fig. 4: Visual output from the proposed defect detection algorithm on benchmark data set. Row 1, 2 and 3 represent samples
from each category, ground truth and detection output, respectively. Sample labels are given in () under column headings.

Pattern: Star Pattern: Box
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Matti Pietikäinen, “From BoW to CNN: Two decades of texture
representation for texture classification,” Int. J. Comput. Vis., vol. 127,
no. 1, pp. 74–109, 2019.

[21] Yuan Hou, Annie Cuyt, Wen-shin Lee, and Deepayan Bhowmik, “De-
composing textures using exponential analysis,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2021, pp. 1920–1924.

[22] Annie Cuyt and Wen-shin Lee, “How to get high resolution results from
sparse and coarsely sampled data,” Appl. Comput. Harmon. Anal., vol.
48, pp. 1066–1087, 2020, (Published online October 11, 2018).

[23] M. Briani, A. Cuyt, F. Knaepkens, and W.-s. Lee, “VEXPA: Validated

EXPonential Analysis through regular subsampling,” Signal Processing,
2020, (Published online July 17, 2020).

[24] Annie Cuyt and Wen-shin Lee, “Sparse interpolation and rational
approximation,” Providence, RI, 2016, vol. 661 of Contemporary
Mathematics, pp. 229–242, American Mathematical Society.

[25] R. de Prony, “Essai expérimental et analytique sur les lois de la
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APPENDIX A
PARAMETERS FOR SYNTHETIC IMAGES

IM#1 IM#2 IM#3 IM#4 IM#5

φjx/2πi φjy/2πi αj φjx/2πi φjy/2πi αj φjx/2πi φjy/2πi αj φjx/2πi φjy/2πi αj φjx/2πi φjy/2πi αj

0 0 0.371 0 0 0.493 0 0 0.348 0 0 0.803 0 0 0.573
0.074 0 0.117 0.021 -0.031 0.446 -0.029 -0.037 0.071 -0.016 0 0.717 -0.031 0.021 0.305
-0.074 0 0.117 -0.021 0.031 0.446 0.029 0.037 0.071 0.016 0 0.717 0.031 -0.021 0.305
-0.178 0 0.033 -0.0215 0.0415 0.428 -0.024 -0.031 0.064 -0.053 -0.002 0.272 0 -0.027 0.247
0.178 0 0.033 0.0215 -0.0415 0.428 0.024 0.031 0.064 0.053 0.002 0.272 0 0.027 0.247
0.111 0.016 0.029 -0.091 0.003 0.31 0.024 0.029 0.05 -0.016 -0.02 0.243 0 0.054 0.125
-0.111 -0.016 0.029 0.091 -0.003 0.31 -0.024 -0.029 0.05 0.016 0.02 0.243 0 -0.054 0.125
-0.078 -0.014 0.028 -0.059 0.032 0.219 0.024 0.065 0.048 0.016 -0.02 0.24 0.054 -0.054 0.105
0.078 0.014 0.028 0.059 -0.032 0.219 -0.024 -0.065 0.048 -0.016 0.02 0.24 -0.054 0.054 0.105

0 -0.052 0.026 0 0.092 0.186 -0.04 -0.054 0.048 -0.016 0.118 0.223 0 -0.108 0.103
0 0.052 0.026 0 -0.092 0.186 0.04 0.054 0.048 0.016 -0.118 0.223 0 0.108 0.103
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