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1 Introduction

What we know about multivariate Pad�e approximants has been developed in the past 25 years. In [7] the results are

reviewed and the various de�nitions for multivariate Pad�e approximants are grouped into four main categories (we

only mention the main publications here):

� de�nitions based on an appropriate choice for the de�ning equations among the candidate equations [11, 13, 15,

17];

� de�nitions based on generalizations of the continued fraction concept [16];

� partly symbolic or symbolic-numeric approaches [1, 12];

� and last but not least a multivariate homogeneous de�nition [4, 18].

This last de�nition exhibits a great similarity with that of the univariate Pad�e approximant, in the sense that the

traditional properties such as the existence and unicity of a multivariate irreducible form and several covariance

properties remain true [7], the traditional "- and qd-algorithms remain valid [2, 5], and classical convergence theorems

such as `de Montessus de Ballore' [9] and `Nuttall-Pommerenke' [8] can be proved.

However, at the same time an intriguing question of `insight' remains open with respect to the multivariate homo-

geneous Pad�e approximant. Which multivariate mechanism is responsable for the fact that, although overdetermined,

its de�ning system of homogeneous linear equations can guarantee that it always delivers a nontrivial solution? The

proof of this fact dates back to 1982 [4, 6], but the linear dependence among the de�ning equations has never been

understood. We will clarify this open problem here and elaborate on the structure of the linear system which appears

to be very sparse and have a low displacement rank.

2 The multivariate homogeneous de�nition

Given a univariate function f(z) through its Taylor series expansion at a certain point in the complex plane (for

simplicity we use the Taylor series at the origin),

f(z) =

1X
i=0

ciz
i
;
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the Pad�e approximant [n=m]
f
of degree n in the numerator and m in the denominator for f is de�ned by

p(z) =

nX
i=0

aiz
i
; q(z) =

mX
i=0

biz
i
;

(fq � p)(z) =
X

i�n+m+1

diz
i
;

with [n=m]
f
equal to the irreducible form of p=q. The conditions di = 0, i = n+ 1; : : : ; n+m give rise to a Toeplitz

linear system of equations:

8>><
>>:
cn+1b0 + cnb1 + � � �+ cn+1�mbm = 0

...

cn+mb0 + cn+m�1b1 + � � �+ cnbm = 0

(1)

Given a Taylor series expansion (for simplicity we describe only the bivariate case but the higher dimensional case is

only notationally more di�cult)

f(x; y) =
X

(i;j)2N2

cijx
i
y
j

one can group the di�erent de�nitions for multivariate Pad�e approximants into four main categories, depending on

how one deals with the information cij . Rewriting f(x; y) as

f(x; y) =

1X
k=0

cikjkx
iky

jk

is done in what we call the `equation lattice' group of de�nitions. Another way to deal with the information is to

rewrite f(x; y) as

f(x; y) =

1X
k=0

0
@ X

i+j=k

cijx
i
y
j

1
A

and to process the `homogeneous' subexpressions of degree k in the same way as a univariate term of degree k. A

third group of de�nitions looks at the Taylor series development as

f(x; y) =

1X
i=0

0
@ 1X

j=0

cijy
j

1
Ax

i =

1X
i=0

ci(y)x
i

and treats the problem at least partly in a `symbolic' way. Interchanging the role of x and y in this approach does

not necessarily lead to the same results. Since the `continued fraction' approach does not compute its multivariate

approximant from a de�ning system of equations for the numerator and denominator coe�cients, we do not involve

this generalization in the discussion.

The main di�erence between the `equation lattice' and the `symbolic' approach on one hand and the `homogeneous'

approach on the other hand, is that in the former the number Ne of equations imposed on the coe�cients of the

multivariate Pad�e approximant is one less than the number Nu of unknown coe�cients which have to be determined,

just like in the univariate case, while in the latter the system of equations is seriously overdetermined as soon as one is

dealing with more than two variables. Despite this overdetermination, the system inherently only consists of at most

Nu � 1 linearly independent equations, making it soluble without having to resort to least squares techniques. This

will be explained and emphasized at several occasions in the sequel of the text.

The above distinction between the di�erent approaches however does not imply that for the construction of similar

multivariate Pad�e approximants the number Nd of data cij to be obtained from the function f is di�erent. The

informational usage is the same for all de�nitions and is computed in section 4 where we also deal in more detail with

the redundancy of the problem. The fact that the informational usage remains equal between comparable multivariate

Pad�e approximants implies that the homogeneous de�nition, that involves polynomials with more coe�cients than
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the traditional de�nitions, gives rise to a sparse system. To summarize, we will show that the homogeneous de�nition

involves the solution of a very sparse block-Toeplitz-block system, while this is not the case for other de�nitions where

traditionally Nu = Nd + 1 = Ne + 1.

For the de�nition of the homogeneous multivariate Pad�e approximant [n=m]
f

H we introduce the notations

Ak(x; y) =
X

i+j=nm+k

aijx
i
y
j

k = 0; : : : ; n

Bk(x; y) =
X

i+j=nm+k

bijx
i
y
j

k = 0; : : : ;m

Ck(x; y) =
X

i+j=k

cijx
i
y
j

k = 0; 1; 2; : : :

For chosen n and m the polynomials

p(x; y) =

nX
k=0

Ak(x; y); q(x; y) =

mX
k=0

Bk(x; y)

are then computed from the conditions

(fq � p)(x; y) =
X

i+j�nm+n+m+1

dijx
i
y
j(2)

where the conditions of degree nm+ n+ 1 up to nm+ n+m+ 1 can be rewritten as8>><
>>:
Cn+1(x; y)B0(x; y) + � � �+ Cn+1�m(x; y)Bm(x; y) � 0

...

Cn+m(x; y)B0(x; y) + � � �+ Cn(x; y)Bm(x; y) � 0

(3)

with Ck(x; y) � 0 if k < 0. This is exactly the system of de�ning equations (1) for univariate Pad�e approximants if

the term ckx
k in the univariate de�nition is substituted by

Ck(x; y) =
X

i+j=k

cijx
i
y
j

k = 0; 1; 2; : : :

3 Block-Toeplitz-block structure

In order to better understand the structure of this system, we start by writing it as a linear system in the coe�cients

bij . In order to do so we arrange the unknown denominator coe�cients in a certain order:

(bnm;0; : : : ; b0;nm j bnm+1;0; : : : ; b0;nm+1 j : : : j bnm+m;0; : : : ; b0;nm+m)

When we arrange the conditions (3) in a similar (upward sloping diagonal) way and when we introduce the Toeplitz

blocks

C
(nm)

n =

0
BBBBBBBB@

cn;0 0 : : : 0
...

. . .
. . .

...

c0;n 0

0 cn;0

...
. . .

. . .
...

0 : : : 0 c0;n

1
CCCCCCCCA

(n+nm+1)�(nm+1)

then the coe�cient matrix of the system of equations (3) is0
BBBB@

C
(nm)

n+1 C
(nm+1)

n : : : C
(nm+m)

n�m+1

C
(nm)

n+2 : : :

...
...

C
(nm)

n+m : : : C
(nm+m)

n

1
CCCCA(4)
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which is very similar to (1). Behind each entry C
(j)

i in this Toeplitz-structured matrix unfolds a simpler Toeplitz

matrix.

This is only the bivariate case. Now let's discuss the higher dimensional case. We shall see that this principle

of unfolding can be applied recursively. The structure of the block-Toeplitz-block coe�cient matrix resembles that

of a set of Russian nested Matrioshka dolls. When going from one to two variables, the coe�cient matrix of (1) is

transformed into (4) which looks identical until we `open' each entry C
(j)

i and �nd that there's another Toeplitz matrix

inside. We now describe the transition from two to more variables and focus on what happens if each of the ck` inside

each C
(j)

i is again `opened'.

Let us denote the number of variables by s and let us denote by 0t a sequence of t zero indices. The generalization

of (2) and (3) to s variables is straightforward and so for reasons of conciseness is not repeated. First we arrange the

unknown coe�cients bi1:::is and afterwards the entries of the coe�cient matrix of (3). We start by arranging a subset

of the coe�cients and then describe an unfolding mechanism to include all the other coe�cients. The �rst bi1:::is to

be selected and ordered are

�
bnm;0;0s�2 ; bnm�1;1;0s�2 ; : : : ; b0;nm;0s�2 j : : : j bnm+m;0;0s�2 ; : : : ; b0;nm+m;0s�2

�

We have clearly focused on the �rst and second index. Then we let each bij0s�2 unfold to

�
bi;j;0;0s�3 ; bi;j�1;1;0s�3 ; : : : ; bi;0;j;0s�3

�

Here we have focused on the second and third index. Let's now repeat the procedure for the third and fourth index

and so on. We let each bi;j;k;0s�3 unfold to

�
bi;j;k;0;0s�4 ; bi;j;k�1;1;0s�4 ; : : : ; bi;j;0;k;0s�4

�

If this unfolding is performed s�2 times then all the unknown denominator coe�cients are ordered. Before constructing

the coe�cient matrix of (3) according to the same principle, let us count the number of equations and the number of

unknowns.

Each homogeneous expression Bk(x1; : : : ; xs) contains
�
s+k�1

k

�
coe�cients bi1:::is . So the total of unknown denom-

inator coe�cients bi1:::is equals

Nu =

nm+mX
k=nm

�
s+ k � 1

k

�

The kth equation in (3) equates an (nm + n + k)-linear operator in s variables to zero. So it equates
�
s+nm+n+k�1

nm+n+k

�
coe�cients di1:::is to zero. Hence the number of homogeneous equations is in total

Ne =

mX
k=1

�
s+ nm+ n+ k � 1

nm+ n+ k

�
(5)

If nm > 0 then

Nu =

�
s+ nm+m

nm+m

�
�

�
s+ nm� 1

nm� 1

�

Ne =

�
s+ nm+ n+m

nm+ n+m

�
�

�
s+ nm� 1

nm� 1

�

If nm = 0 then Nu =
�
s+m

m

�
. For s = 2 the above values lead to Nu �Ne = 1 while for s > 2 the system is clearly

overdetermined. Nevertheless it has been proven in [4] and [6, pp. 60{62] that a nontrivial solution always exists. It is

therefore unnecessary to consider the linear conditions (2) in a least squares sense. The inherent dependence among

the homogeneous Pad�e approximation conditions is however not well understood and will be analyzed in detail in the

sequel.

The construction of the coe�cient matrix of the overdetermined homogeneous system of equations becomes

straightforward if the principle of unfolding is again applied. Take the �rst columnn of each C
(j)

i in (4) and ex-

pand
�
ci;0;0s�2 ; : : : ; c0;i;0s�2

�
in the same way as the subvector (bi;0;0s�2 ; : : : ; b0;i;0s�2). During the unfolding process,
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the size of each Toeplitz block at each step in the process can be determined from the following: the kth term in Ne

given by (5) is linked to the block entries in the kth row of (4) and can be decomposed as

�
s+ nm+ n+ k � 1

nm+ n+ k

�
=

nm+n+kX
`=0

�
(s� 1) + `� 1

`

�
;

indicating that each unfolded block of row size
�
s+nm+n+k�1

nm+n+k

�
consists of a block-Toeplitz-block structure with sub-

blocks of row size
�
(s�1)+`�1

`

�
. Take for instance n = 1 and m = 2 when s = 3 and construct the 3-dimensional

analogue of the upper left block C
(nm)

n+1 of (4). The 5� 3 matrix C
(2)

2
for s = 2 is given by

C
(2)

2
=

0
BBBB@

c20 0 0

c11 c20 0

c02 c11 c20

0 c02 c11

0 0 c02

1
CCCCA

In the transition from two to three variables the vector (c200 j c110 j c020) unfolds to (c200 j c110; c101 j c020; c011; c002)

and the vector (b200 j b110 j b020) unfolds to (b200 j b110; b101 j b020; b011; b002) which arranges the unknown coe�cients

of B0(x1; x2; x3) when nm = 2. The size of each compartment in this last vector determines the column size of the

rectangular Toeplitz blocks in the 3-dimensional analogue of (4) while the row size of each block can be determined

from the unfolding of the �rst column in C
(2)

2
. For instance the Toeplitz block that will take the place of the entry on

row 3 and column 2 of C
(2)

2
will have 3 rows because the entry on row 3 in the �rst column unfolded to (c020; c011; c002).

It will have 2 columns because in the vector of unknowns, that is multiplied with the coe�cient matrix, the second

compartment contains 2 elements. Also the total number of rows of the 3-dimensional analogue of C
(2)

2
is given by the

�rst term (k = 1) of (5) which equals 15. As explained these 15 rows split up in 5 smaller constructions according to

�
s+ nm+ n+ k � 1

nm+ n+ k

�
=

�
6

4

�
=

4X
`=0

�
`+ 1

`

�
k = 1

Hence we �nally obtain for the 3-dimensional analogue of C
(nm)

n+1 with n = 1 and m = 2:

c2;0;0 0 0 0 0 0

c1;1;0 c2;0;0 0 0 0 0

c1;0;1 0 c2;0;0 0 0 0

c0;2;0 c1;1;0 0 c2;0;0 0 0

c0;1;1 c1;0;1 c1;1;0 0 c2;0;0 0

c0;0;2 0 c1;0;1 0 0 c2;0;0

0 c0;2;0 0 c1;1;0 0 0

0 c0;1;1 c0;2;0 c1;0;1 c1;1;0 0

0 c0;0;2 c0;1;1 0 c1;0;1 c1;1;0

0 0 c0;0;2 0 0 c1;0;1

0 0 0 c0;2;0 0 0

0 0 0 c0;1;1 c0;2;0 0

0 0 0 c0;0;2 c0;1;1 c0;2;0

0 0 0 0 c0;0;2 c0;1;1

0 0 0 0 0 c0;0;2

(6)

4 Redundancy, sparsity and displacement rank

When computing the actual size Ne�Nu of the coe�cient matrix of (3), it is apparent that as the number of variables

grows, the system is soon very much overdetermined. For instance for s = 4, n = 3 and m = 4 we have Ne = 4979 and

Nu = 3480. When inspecting the coe�cient matrix it is also clear that it is very sparse and at the same time highly

structured so that very e�cient techniques for the solution of the linear system can be applied [10]. In a �rst attempt

to get a grip on the redundant equations in (3), we tried to pinpoint the Ne �Nu + 1 linear dependent equations.
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Although the structure is responsible for the redundancy, the linear dependent equations did not show up at

speci�ed entries in the matrix. For instance for s = 3; n = 1 and m = 1 the 10� 9 symbolic 3-dimensional (symbolic

entries cijk) homogeneous system was solved using the fraction free Gaussian elimination function of Maple V Release

5.1. The system has rank 8 and every combination (45 in total) of 8 equations out of the 10 imposed ones delivers

rank 8. The experiment was repeated for s = 3; n = 1 and m = 2. It is not so that particular rows in the matrix

constitute the linear dependent equations. In order to reduce the size of the overdetermined linear system, another

strategy has to be followed.

Since the coe�cient matrix is highly structured, one of course does not want to eliminate equations that destroy

the structure. Preferably equations are eliminated at the end of Toeplitz-blocks and not in the middle, a restriction

which is apparently not in conict with the location of the linear dependent equations. In the case s = 4, n = 3

and m = 4 one for instance has to remove 1500 equations from the overdetermined system before it can be passed

to a solver. When inspecting the coe�cient matrix, one counts 1420 trailing zero entries in the �rst column. This

part could be cut away, but another 80 equations will have to be eliminated higher up, with minimal inuence on the

structure. Here minimal e�ect on the structure means without increasing the displacement rank.

At no point should a combination of equations be removed such that some of the given coe�cients ci1:::is are totally

deleted from the system. In order to be sure that this is always possible, we count the number Nd of data ci1:::is

necessary for the construction of the denominator of [n=m]
f

H and compare it to Nu. From (3) it is clear that for s

variables Nd is given by

Nd =

n+mX
k=n+1

�
s+ k � 1

k

�
=

�
s+ n+m

n+m

�
�

�
s+ n

n

�

Since �
s+ nm+ k � 1

nm+ k

�
�

�
s+ n+ k � 1

n+ k

�
k � 1; s � 2

we obtain Nu > Nd. Hence it is always possible to cut away equations without cutting away data. From the structure

of (6) it is also possible to compute the sparsity of the block-Toeplitz-block matrix. The full matrix is of size Ne�Nu

with at most Nd�Nu nonzero entries. Hence only a fraction of at most Nd=Ne in the matrix is �lled. After removing

any redundant equations, still a fraction of less than Nd=(Nu � 1) in the matrix is nonzero. For s = 4; n = 3 and

m = 4 the actual ratio is for instance 3.4% while for s = 6; n = 5 and m = 5 it further reduces to 0.18%.

The concept of displacement rank was �rst introduced in [14]. We use the de�nition given in [10] where the

displacement rank of a matrix T is de�ned as the rank of the matrix LT�TR with L and R being so-called displacement

operators. For a Toeplitz-block matrix with u block rows and v block columns and rectangular Toeplitz blocks of size

ui � vj the displacement operators

L =
u

�
k=1

Z
(1)

uk
R =

v

�
k=1

Z
(�1)

vk

are used, where �Wk denotes the block diagonal matrix of which the kth block is given by Wk and where

Z
(�)

k =

0
BBBBBB@

0 : : : : : : 0 �

1 0 : : : : : : 0

0 1
. . .

...
...

. . .
. . .

. . .
...

0 : : : 0 1 0

1
CCCCCCA

When this de�nition is applied to a Toeplitz matrix (u = 1 = v) then the resulting matrix LT � TR only consists of

the �rst row and last column of T . Hence the displacement rank of a Toeplitz matrix equals 2. When applied to the

coe�cient matrix of (3) the resulting matrix consists of the �rst row and the last column of each Toeplitz block at

the lowest level of the recursive unfolding process. So in order to know the displacement rank, the number of block

columns must be counted. From the construction of our block-Toeplitz-block matrix it should be clear that, for s 6= 2,

this number is given by

nm+mX
k=nm

kX
`=0

�
(s� 2) + `� 1

`

�

For s = 2, the displacement rank of (4) equals at most m+ 1.
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