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Abstract

Design optimization of mechanisms is a promising research area as it results
in more energy-efficient machines without compromising performance. How-
ever, machine builders do not actually use the design methods described in the
literature as these algorithms require too much theoretical analysis. Moreover,
the design synthesis approaches in the literature predominantly utilize heuristic
optimizers leading to suboptimal local minima.

This research introduces a convenient optimization workflow allowing wide
industrial adoption, while guaranteeing to reveal the global optimum. To guar-
antee that we find the global optimum, a mathematical expression of the con-
straints describing the feasible region of possible designs is of great importance.
Therefore, kinematic analysis of the point-to-point (PTP) planar four-bar mech-
anism is discussed to obtain the static and dynamic constraints. Within the
feasible region, objective value samples are generated through CAD multi-body
software. These motion simulations determine the required torque to fulfill
the movement for a certain combination of design parameters. Sparse interpo-
lation techniques allow minimizing the required amount of samples and thus
CAD simulations. Moreover, this interpolation of simulation results enables the
representation of the objective in a mathematical description without in-depth
analytical design analysis by the machine designer. Subsequently, the math-
ematical expression of the objective allows global optimizers to find a global
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optimal design within the feasible design space. In a case study of a coron-
aventilator mechanism with three design parameters (DP’s), 1870 CAD motion
simulations from which only 618 are used to build a model allowed to reduce
the RMS torque of the mechanism by 67%.

Keywords: Dimensional synthesis, Four-bar linkage, Optimization,
Mechanical systems, Motion control
2020 MSC: 70

1. Introduction

The energy consumption of industrial machinery is a topic of primary im-
portance due to environmental and economic considerations [1]. The 45% share
that electric motors have in the global electric consumption [2] supports the
statement that any energy-saving method should be investigated thoroughly.
The methodology proposed within this paper is applicable for all planar four-
bar mechanisms with an imposed movement of the end-effector and/or output
link BC (see Figure 1). The potential of this scope is indicated in [3, 4, 5],
stating that four-bar linkages are extensively used in practical engineering ap-
plications. Moreover, reciprocating PTP machinery is progressively common
within the industry [5].

The link lengths in a four-bar mechanism can differ while fulfilling the same
task, being the PTP displacement of output link BC. Therefore, the geome-
try parameters depicted in Figure 1 can be considered as design parameters to
enhance the mechanism. Design optimization of a Point-To-Point (PTP) mech-
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Figure 1: The considered design parameters |OA|, |AB| and |BC| of a four-bar, in the present
paper.

anism is one specific approach to reduce the energy consumption of electric
machinery, as indicated in Figure 2. Awareness about the influence of machine
components geometry on energy consumption has recently attracted attention
[6, 7, 8]. Mechanism models [9, 10] replace the prototyping, allowing computa-
tional evaluation of multiple designs with limited costs.
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Figure 2: Defining certain lengths for the links of a four-bar influences the required torque to
move the output link BC from ψi to ψe driven from point O / input link OA.

A coronaventilator is used as a validation case within this study. This mech-
anism was constructed during the first wave of the covid-19 pandemic by a
non-profit organization [11]. Having continuous (24/7) access to electricity is
not obvious within low- and middle-income countries. Thus, having a mecha-
nism that consumes a minimum of electric energy enabling the usage of batteries
is highly relevant. Therefore, the objective of this study is to find the optimal
design (being lengths |OA|, |AB| and |BC|) leading to a minimal TRMS for
a reciprocal four-bar mechanism. The method introduced in this paper relies
on CAD software to sample the objective function through motion simulations.
These simulation tools allow broad industrial applicability. Furthermore, sparse
interpolation technique is implemented to avoid an infeasible computational
burden of numerous CAD simulations. Moreover, the objective function is only
to be considered in the feasible design space of the four-bar mechanism. Hence,
constraints that limit the design space are highly relevant. State-of-the-art tech-
niques generally use heuristic optimizers which cannot guarantee to find the
global optimum [12]. However, the method described in this paper guarantees
to reveal the global optimum.

1.1. Related work

In the literature the minimisation of the driving torque is done by establish-
ing dynamic equations of the system to predict the dynamics. However, this
makes the method inconvenient for machine builders. Moreover, [13, 14, 15] do
not define the feasible search domain nor include it in searching for the optimum
result. The constraints that define the feasible design space are important as
defects, giving infeasible designs, [16] frequently occur in the kinematic mecha-
nism synthesis of a four-bar linkage. The optimization algorithms of [13, 14, 17]
assure that the objective function has converged towards a minimum, yet it is
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generally not guaranteed that the designed linkage will be feasible. Therefore,
the necessary constraints should be added so that the optimal solution can fulfill
the movement without inconveniences. Using a constrained-global optimization
algorithm requires a deterministic mathematical description of the constraints
to find the global optimum. To the authors’ knowledge, this has not been done
yet in the literature [18].

Developing a four-bar mechanism that follows the desired output trajectory
is a classic design problem that researchers extensively explore [19, 20, 21, 22,
23]. However, all methods above are not implementable in global optimizers as
the algebraic expression (when provided) is only evaluated in discrete defined

points

[
xB(θ)
yB(θ)

]∗
i∈N

on the coupler curve B(θ) (shown in Figure 1). Thus, these

cannot deliver a deterministic mathematical description of the feasible design
space, which is required.

1.2. Method

In general, it will be shown how CAD-based motion simulations combined
with a sparse interpolation technique enable a global optimizer that guaran-
tees revealing the global optimum and thereby outperform heuristic optimizers
regarding energy savings.

Mechanical design of systems is mainly done in Computer-Aided Design
(CAD) software. These CAD models include all required information (i.e., vol-
ume, mass, friction, damping, joints,...) to model the dynamics of a mechanism.
This information is necessary to calculate the necessary torque of the mecha-
nism through motion simulations. By driving the mechanism with the motion
profile θ(t) at point O (Figure 1), the location where the mechanism is driven
in reality by a motor, the user can extract the necessary torque from the soft-
ware (as in Figure 2) to fulfill the prescribed movement ∆ψ of the output link
BC. Furthermore, within these motion simulations, the design parameters |OA|,
|AB| and |BC| of the four-bar can be parameterized to simulate different de-
signs. The objective value, to minimize by the optimizer is the RMS Torque
(TRMS) value, necessary to drive the mechanism fulfilling an imposed PTP mo-
tion (∆ψ). The literature states that minimizing the TRMS corresponds with
reducing the energy losses in the system [5].

Hence, by calculating the RMS Torque based on CAD simulations as eluci-
dated in Section 2, the objective value for a certain design (i.e., certain values
for the three design parameters |OA|, |AB| and |BC|) is obtained. The whole
simulation process to obtain the objective value for different design parameter
combinations (|OA|, |AB| and |BC|) is automated. Constraints on the design
parameter values are necessary to define an area containing feasible designs, as
discussed in Section 3, from which designs are selected to simulate their corre-
sponding objective value (TRMS). As one design evaluation can take on average
1 minute and 25 seconds, computational simulation time becomes a burden.
Therefore, wise selection of the simulated designs within the feasible design space
is essential. The brute force method requires an inconceivable number of gd mo-
tion simulations, with g being the granularity of sampling and d the number of

4



design parameters. Even with state-of-the-art interpolation techniques, the con-
struction of the objective function would require at least (d + 1).n2.log2d−2(n)
samples [24], with n the total number of terms in the mathematical description
of the objective function. In the case of the coronaventilator this would mean
782,933 samples are required. Therefore, the selection of samples is performed
with certain rules in order to use an innovative multidimensional sparse interpo-
lation approach [25]. This novel interpolation technique, introduced in Section
4, allows obtaining the objective function with a sparse sampling method within
the feasible design space. This reduces the number of required samples to 618,
with an additional 1252 validation samples. Limiting the number of samples to
construct the objective function is a major enabler for a global optimizer. As
the interpolation limits the number of CAD motion simulations to a bare mini-
mum. In this case the number of necessary samples is reduced from 10,000,000
to 1870.

2. CAD motion simulations

In kinematic analysis, linkage dimensions |OA|, |AB|, |BC| and |OC| are
known and the resulting output motion ψ(t) (and its derivatives) can be calcu-
lated. On the other hand, dimensional synthesis is regarded as the inverse, in
which for a specific output motion ψ(t) the feasible dimensions of the linkages
are obtained [26]. This paper is based on the dimensional synthesis of a planar
four-bar function generation [27]. As shown in Figure 3, the movement ∆ψ of
output linkage BC caused by θ(t) is described by a starting angle ψi, and end
angle ψe. In this paper, the machine designer only defined an output motion
ψ(t) which results in a reciprocal movement between the positions ψi and ψe.
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Figure 3: The output link BC requires a movement from ψi to ψe, which is performed by
moving θ over a design-specific angle.

The validation case is clarified to make all the following more tangible. This
mechanism, shown in Figure 4, can ventilate a patient by pressing the inden-
tor into the bag, which causes airflow towards the patient. Figure 4 presents
the CAD model of the coronaventilator and illustrates that the red beam, con-
nected with the indentor (i.e., the end-effector), moves by rotating input link
OA around point O. This is the point where an electric motor drives the mech-
anism. The red beam has two predefined angles: an angle δe that holds the
mechanism in a position where the indentor touches the bag and an angle δi
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that corresponds to a position in which the air is compressed out of the bag.
Figure 4 clearly shows that the mechanism is a four-bar linkage on which the
method proposed in this paper can be applied.
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Figure 4: The used case within this research is a coronaventilator developed by Gear Up
Medical vzw [11]. It can be seen that the mechanism is from a four-bar type.

However, the output motion of the coronaventilator is described by the angle
δ (linked to the red beam), while the four-bar has an angle ψ that is linked to
the output link BC. A relation between these angles stated as

ψ = asin

 sin (δ)
(

k
tan(δ) +

√
b2 − k2

)
b

 (1)

allows a conversion from δ to ψ. The parameter k in Equation (1) (Figure 4) is a
constant value that changes neither in the optimization nor during the four-bar
mechanism’s movement.

A CAD motion simulation [28] can determine the necessary torque, to drive
the mechanism at point O only if the required position profile θ(t), at that point
O, is known. However, the user solely defines the required position profile of
the end-effector, in this case δ(t). According to Equation (1) we obtain ψ(t).
The conversion of ψ(t) to δ(t) depends on the values of the design parameters
|OA|, |AB| and |BC|. Therefore, each selected design is analysed by two mo-
tion simulations, as indicated in Figure 5. If the design is combined with the
required output motion ψ(t), the first kinematic motion simulation can extract
the required motor position displacement θ(t). Subsequently, the motor motion
profile θ(t) is used in the second motion simulation, from which the required
driving torque is determined. This process with kinematic simulation and sub-
sequent torque calculation extracts the objective value for predefined designs.

3. Design parameter constraints

3.1. Static constraints of a four-bar

The combinations of design parameters |OA|, |AB| and |BC|, to consider
in the workflow above, are chosen so that the designs are located within the
feasible design space of the four-bar mechanism. To determine this region of
feasible designs, the first step is looking for static constraints. This implies that
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Figure 5: The approach performing the necessary driving torque calculation of the mechanism.

only the designs which can be assembled for the maximal and minimal angle of
the output link BC (ψi and ψe) can be part of the feasible design space. An
example of a design that cannot be assembled in ψe due to the chosen values for
DP’s |OA|, |AB| and |BC| is illustrated in Figure 6. This shows that the input
link OA’ cannot be connected with the coupler link A”B. This assemblability

O A’

A’’

B

C

X
ψ
e

Figure 6: The combination of design parameters |OA|, |AB| and |BC| serve an infeasible
design that cannot be assembled in ψe.

define the first boundaries on the design space that is illustrated in Figure 7
(left) (only in 2D for illustrative purposes). These boundaries are obtained
through a position analysis of the four-bar mechanism for both begin ψi- and
end-position ψe. For analysis of the ventilator, the origin of the fixed frame is
placed in joint O (the driver joint). Let θ be the angle of the input link OA
measured relative to the x-axis and ψ the angle of the output link BC relative
to the x-axis, Figure 7 (right). A relation between the input angle θ and output
angle ψ is obtained based on the length of the coupler link |AB|, which stays
fixed during the mechanism’s movement [29]. Therefore, the analysis can start
with: ([

xB(ψ)
yB(ψ)

]
−
[
xA(θ)
yA(θ)

])
.

([
xB(ψ)
yB(ψ)

]
−
[
xA(θ)
yA(θ)

])
= |AB|2 (2)
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Figure 7: The static constraints (left), shown for 2 DP’s, limit the design space to the area of
designs that reach the output link’s (BC) start- and end position (ψi and ψe).

where

xA (θ) = |OA| cos (θ)
yA (θ) = |OA| sin (θ)

xB (ψ) = xC + |BC| cos (ψ)
yB (ψ) = yC + |BC| sin (ψ) .

(3)

By substitution of (3) in (2), the dependency of the input angle θ based on the
output angle ψ is noted as

θ1,2 (ψ) = atan2 (V (ψ) , U (ψ))± arccos

(
W (ψ)√

U2 (ψ) + V 2 (ψ)

)
+ π (4)

where

U (ψ) =− 2xC |OA| − 2 |OA| |BC| cos (ψ)

V (ψ) =− 2 yC |OA| − 2 |OA| |BC| sin (ψ)

W (ψ) =xC
2 + yC

2 + |OA|2 + |BC|2 − |AB|2 + 2 cos (ψ) xC |BC|
+ 2 sin (ψ) yC |BC|.

(5)

Equation (4) allows the derivation of the input angle θ from the output angle ψ.
The latter is the imposed output motion defined by the ∆ψ range. However, the
mechanism can be assembled in two ways for a single output angle ψ, resulting
in two possible solutions for (θ) in Equation (4). This is a consequence of having
the possibility to construct the four-bar, with a certain angle ψ, with output link
BC on both sides of the diagonal OB, as shown in Figure 8. Both constructions,
called the elbow-up OABC and elbow-down OA’BC, provide feasible solutions.
The method proposed in the present paper applies to both configurations, yet
it is chosen to focus on the elbow-up OABC, as it is the most efficient one
according to [30]. To obtain the corresponding θ1 which is smaller than θ2, the
second term is subtracted from the first term in Equation (4).

Regardless of the elbow configuration, feasibility constraints due to the solv-
ability of Equation (4) arise. A solution can be found if the argument of the
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Figure 8: The elbow-up OAB and elbow-down OA’B are two possible constructions in which
the four-bar linkage can be assembled for one ψ angle of the output link BC.

arccos is in the range [-1,1]. Thus, a solution solely exist when the inequality
constraint:

U2 (ψ) + V 2 (ψ)−W 2 (ψ) ≥ 0 (6)

is satisfied. In this way, an inequality constraint for the two output angles ψ
that bring point B farthest and closest to O must be established. Therefore,
Equation (6) is evaluated for the maximal and minimal angle ψe and ψi. This
evaluates the assemblability in the positions ψi and ψe.

U2 (ψ) + V 2 (ψ)−W 2 (ψ)

∣∣∣∣
ψ=ψi,ψe

≥ 0 (7)

By fulfilling Equation (7), one can say that the designed mechanism is assem-
blable over its movement. This design lies than within the area formed by the
blue lines, which means that the mechanism is assemblable in ψi, and inside the
area formed by red lines as it is assemblable in ψe (see Figure 7).

3.2. Dynamic constraints of a four-bar

The aforementioned static constraints in chapter 3.1 are not sufficient to
exclude all infeasible designs. To ensure that the desired movement ψ(t) of the
output linkage BC is feasible, all defects during the movement should also be
excluded. The three types of defects that can occur during the motion of a
four-bar linkage are branch, order and circuit defects. The broad review in
[31] reveals that research about branch, order and circuit defect avoidance is of
great significance in the field of linkage synthesizes. With a branch defect, the
mechanism cannot perform the desired movement continuously. More specifi-
cally, four-bar linkages can move in two different ways. In Figure 9, the input
link OA moves between its extreme positions (θmin until θmax), resulting in a
change of the transmission angle ζ between 0 and π. The extreme input angle
positions θmin and θmax corresponds with an angle ζ equal to respectively π
and 0. The movement is conducted by initiating the motion of the output link
BC clockwise or counter-clockwise around C. The movement in each initial di-
rection around C (clockwise or counter-clockwise) represents separate a branch.
If the mechanism has to change branch while moving, a branch defect occurs for
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this linkage system design [32]. When a branch defect occurs, one can observe
that the mechanism reaches the θmin or θmax position more than once during
the movement. This results in a transmission angle ζ moving through 0 or π.
Hence, when the mechanism moves through the positions ζ equal to 0 or π, a
change in the direction of θ occurs.

Order defects appear if certain points

[
xB(θ)
yB(θ)

]∗
i∈N

are not reached in a

certain sequence or order [17]. Order defects are impossible in this study as
a reciprocal mechanism is considered, which moves continuously (with a fixed
motion profile π(t)) between the maximal and minimal angle ψe and ψi. Figure
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Figure 9: An example of a four-bar mechanism that has two connecting branches on the first
circuit. It is shown that moving the mechanism from θmin until θmax corresponds with a
movement of the transmission angle on branch 1 from 180° to 360° while on branch 2 from
180° to 0°.

9 indicates that a circuit can exist out of two connected branches. Moreover,
this design reveals that a mechanism can have an other circuit in which the

mechanism reaches whole other positions

[
xB(θ)
yB(θ)

]∗
i∈N

, as shown in Figure 10.

The maximum circuits a four-bar mechanism can have are limited to two. The
mechanism can move in each circuit separately without the necessity of discon-
necting any joints [33]. A circuit defect arises when the linkage mechanism
must be disassembled and placed in the other circuit, shown in Figure 11, to
complete the motion. To obtain a circuit defect, θ should become bigger or
smaller than θmax (with ζ=0) or θmin (with ζ=π) respectively, to fulfill the
desired movement of the output link BC (ψ(t)). A circuit defect has the same
influence on θ as during a branch defect. In this paper, PTP movements with
only a desired start- and endpoint are considered. The movement takes place
through the actuation of one joint, point O. Therefore, the movement should
stay within a single branch of a single circuit [34] (Figure 9 or 10).

To eliminate the possible circuit and branch defects, dynamic constraints
are created based on the consequence of a defect that changes the direction of
the input angle θ. The calculations of the motor angle are always chosen for the
elbow-up OABC. However, by altering the circuit, the configuration becomes an
elbow-down in which θ moves in the other direction. Therefore, one can exclude
branch and circuit defects by guaranteeing monotonicity in the motor position
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Figure 10: The second circuit of this specific four-bar design indicate that another circuit
entails a complete different range. Nonetheless, the circuit is also constructed by two connected
branches, with the same transition conditions for ζ.
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Figure 11: A designed linkage system that moves from one circuit to another must be disas-
sembled, which is a circuit defect.

profile θ(t). The dynamic constraint

sign
(
θ̇ (ψi)

)
= sign

(
θ̇ (ψe)

)
(8)

will check if the first derivative of θ, in the start- and end-position ψi and ψe,
does not alter its sign. Equation (8) is only applicable if the mechanism deals
with an odd number of branch and or circuit defects while moving, as only then
a change of sign is detected. Nonetheless, the method is still applicable when
an even number of defects occur, because a defect results in very high required
driving torques for each sign change. The interpolation in chapter 4 neglects
these disproportional objective values. In that way, an even number of sign
changes caused by an even number of defects will not affect the optimization.
So, all the constraints together indicate the feasible design spaces, as shown in
Figure 12. Within the feasible design spaces motion simulations, for certain
samples, are performed to determine the objective value.

4. Multidimensional sparse interpolation

Determining the objective values, using CAD multi-body simulations, for the
three-dimensional design problem, in a brute force way would lead to a tremen-
dous computational burden requiring 10,000,000 samples. Therefore, we rely
on a sparse data fitting method to determine a mathematical model for the ob-
jective function TRMS(|OA|, |AB|, |BC|). While several interpolation methods
are characterized by a trade-off between model accuracy and computing cost,
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Figure 12: All constraints are shown for 2 DP’s (left) and 3 DP’s (right). The objects on
the right are the feasible design spaces where the designs can perform the imposed reciprocal
movement.

sparse interpolation does not involve such compromise. The method introduced
here uses a divide-and-conquer approach [35, 25] by splitting up the involved
numerical linear algebra problems into smaller and hence better-conditioned
independent sub-problems.

For this method, the objective value, within the feasible design space as
defined in (7) and (8), is determined on l distinct lines in 3D space that are
all parallel to a chosen vector ∆ = (∆u,∆v,∆w). We let δ(i), i = 0, . . . , l − 1
indicate the 3D vector that the i-th parallel line is shifted over with respect to
the line through the origin spanned by ∆ for which we take δ(0) = 0. Then
the equidistant samples on these parallel lines, as depicted in Figure 13 left, are
denoted by:

T
(i)
k := TRMS(k∆ + δ(i)), i = 0, . . . , l − 1, k = 0, . . . , Ni − 1.

Let us compactly denote the tuple of design variables (|OA|, |BC|, |AB|) by

U = (u, v, w) := (|OA|, |BC|, |AB|)

and let 〈·, ·〉 denote the standard inner product in 3D space. On each i-th

parallel line the samples T
(i)
k can be modeled by the sparse interpolant

TRMS,i(U) =

ni∑
j=1

β
(i)
j exp

(
〈φ(i)j , U〉

)
(9)

satisfying

T
(i)
k =

ni∑
j=1

β
(i)
j exp

(
k〈φ(i)j ,∆〉

)
, i = 0, . . . , l − 1, k = 0, . . . , Ni − 1.
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Figure 13: All the samples can be located through k∆ and δ(i), at the left. The convex hull
of the l lines covering the larger part of the design space at the right.

Note that the effect or influence of δ(i) is absorbed into the coefficients β
(i)
j in

TRMS,i(U) which models the behaviour of TRMS on the i-th line.
The model for TRMS,i(U) can be computed using any of the existing 1D

exponential fitting methods, such as [35, 36, 37, 38]. The number of terms ni
in the sparse model can differ on each line i. The l individual models are only
valid on their respective line spanned by ∆ and shifted over δ(i). Now we need
to blend these individual sparse models into an overall sparse model, valid in
the convex hull (blue area in Figure 13 right) of the l lines, which should cover
the larger part of the region of interest. This requirement actually dictates the
more proper choices for ∆ and the δ(i), i = 1, . . . , l − 1.

In what follows, we consider every design parameter combination U in 3D
space to lie on some line parallel with the one spanned by ∆, also if U is not an
interpolation point. All the points on such a line take the form

U + r∆, r ∈ R. (10)

The normal plane through the origin and orthogonal to ∆ is given by the equa-
tion

∆uu+ ∆vv + ∆ww = 0,

or more compactly
〈∆, U〉 = 0.

The intersection point R of the normal plane with (10) is thus given by

〈∆, R〉 = 0, R = U + r∆,

or more explicitly,

R = U − 〈∆, U〉
||∆||22

∆. (11)

Hence, the distance of U to this intersection point R, expressed as a multiple of
||∆||, equals

p(u, v, w) =
〈∆, U〉
||∆||22

, U = (u, v, w)
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and the points on the line given by (10) can be re-expressed as

R+ p(U)∆ (12)

On each line through a point U parallel with ∆, the intersection point R with
the normal plane, shown in Figure 14, is where p(R) = 0 on the line.

We therefore propose a blended 3D model of the following form, to represent
the objective value TRMS overall,

TRMS(u, v, w) ≈
l−1∑
i=0

ni∑
j=1

b
(i)
j (u, v, w) exp

(
p(u, v, w)〈φ(i)j ,∆〉

)
, (13)

where the parameters φ
(i)
j and the value of p(u, v, w) are already determined and

where furthermore the overall model continues to interpolate the values T
(i)
k in

the sample points k∆ + δ(i). The blended model coincides with the 1D models
(9) on each parallel line, and in between the lines the exponential terms fade in
and out. Since

p(k∆ + δ(i)) = k + p(δ(i))

this means

TRMS(k∆ + δ(i)) =

ni∑
j=1

b
(i)
j (k∆ + δ(i)) exp

(
p(δ(i))〈φ(i)j ,∆〉

)
exp

(
k〈φ(i)j ,∆〉

)
.

(14)
So on each data line the model consists of only ni terms, while in the convex
hull of the parallel lines it consists of n0 + . . . nl−1 terms. Remember that all of
l and n0, . . . , nl−1 are small integer numbers.

From Equation (14) and Equation (9) we consequently find

b
(i)
j (k∆ + δ(i)) = β

(i)
j exp

(
−p(δ(i))〈φ(i)j ,∆〉

)
,

k = 0, . . . , Ni − 1, i = 0, . . . , `− 1, j = 1, . . . , ni. (15)

Note that b
(i)
j (U) remains constant along each line of the form R+ p(U)∆ and

only varies with the projection R of that line onto the normal plane.

Remains to determine the b
(i)
j (u, v, w). These functions can be determined

from the interpolation conditions given in Equation (15). A simple model for

b
(i)
j (u, v, w) is a 2D polynomial interpolant a

(i)
j (p, q), as we outline now. Let

us denote the coordinates of the intersection point given in Equation (11) by
R = (r, s, t). The collection of points on a particular line perpendicular to the
normal plane, say here through R, is entirely identified by the remaining two
degrees of freedom that pinpoint the intersection point of such a line with the
normal plane. Since every point U = (u, v, w) on the line perpendicular to the
normal plane and passing through R satisfies the conditions

u− r
∆u

=
v − s
∆v

=
w − t
∆w

,
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Figure 14: The intersection point R of the line U + r∆, parallel with ∆ and through U , at
the left. All l = 7 lines’ intersection point that are located among the intersection point R at
the right.

we can take any two of the values

∆vu−∆uv = r∆v − s∆u

∆wu−∆uw = r∆w − t∆u

∆wv −∆vw = s∆w − t∆v

(16)

to characterize the full line. Over the whole of such a perpendicular line the
right hand sides of Equation (16) are constant and independent of the points
U on the line. The right hand sides of Equation (16) are only determined by
∆ and R. Say, for now, that we take the first two of (16), without any loss of
generality: p = ∆vu −∆uv, q = ∆wu −∆uw. For the l parallel lines on which
the samples where collected, we find(

p(i), q(i)
)

= (∆vδ
(i)
u −∆uδ

(i)
v ,∆wδ

(i)
u −∆uδ

(i)
w ), i = 0, . . . , l − 1.

Let us abbreviate the values in the right hand side of Equation (15) by α
(i)
j

and replace b
(i)
j (u, v, w) in Equation (13) by the more appropriate a

(i)
j (p, q) since

the interpolation conditions for b
(i)
j (u, v, w) hold for a whole line and vary only

with the position of the line with respect to the normal plane:

TRMS(u, v, w) ≈
l−1∑
i=0

ni∑
j=1

a
(i)
j (p, q) exp

(
p(u, v, w)〈φ(i)j ,∆〉

)
. (17)

Finally, the 2D polynomial interpolant

a
(i)
j (p, q) =

∑
h,`

τ
(i,j)
h` Th(p)T`(q)
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where Tn(·) denotes the well-known Chebyshev polynomial (of the first kind) of
degree n, is computed from the interpolation conditions

a
(i)
j

(
p(m), q(m)

)
=

{
α
(i)
j , m = i

0, m 6= i,
i,m = 0, . . . , l − 1, j = 0, . . . , ni.

Figure 15: Region of interest delimited by (7) and (8) at the left and sampling locations on
l = 7 parallel lines at the right in red.

We now apply the above to our four-bar problem. The region of interest
for the design variables |OA|, |AB|, |BC| and restricted by the conditions (7)
and (8) is shown in Figure 15 and the sampling performed in this region is
shown in red in Figure 15 (right). We take l = 7 and ∆ = (0.000, 0.920, 0.503)
to guarantee maximal coverage of the region of interest. Also, the whole do-
main is translated over −(31.000, 257.859, 72.705) to start sampling at the ori-
gin, in line with our description. In total only 618 samples are determined
by the simulations explained in Section 2, which shape the objective func-
tion. We find that ni = 5 for all i = 0, . . . , 6, thus yielding 7 × 5 terms in

the global model TRMS(|OA|, |AB|, |BC|). The coefficients a
(i)
j (p, q) are in-

terpolated by a linear combination of the 7 bivariate Chebyshev polynomials
Tm(p)Tn(q), 0 ≤ m + n ≤ 2 and T2(p)T1(q) + T1(p)T2(q). As a final step, we
validate the blended model by collecting 1252 more simulation data on 10 other
lines within the convex hull, along directions different from ∆. These evaluation
directions are shown in purple in Figure 16 (left) and the result of this validation
is shown in Figure 16 (right). In Figure 16 (right) the red and purple markers
depict the simulated data and the blue markers represent the value computed
from the blended model (17). Each partial curve shows the function values of
TRMS(u, v, w) restricted to one of the lines where samples were collected, either
for interpolation (red) or validation (purple). The overall Root Mean Square
Error (RMSE) equals 0.0281Nm, indicating a very good fit. When restricting
our attention to TRMS values below 5 – reasonable to locate a minimum – the
RMSE reduces to 0.0153Nm.

After this validation we look for a minimum of the modelled TRMS(u, v, w)
(17) in the convex hull of the parallel lines shown in Figure 15 (right). This
was fulfilled through a brute force evaluation of the objective function (17),
in which 10,000,000 calculations were performed in 3 minutes. Thus, we can
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Figure 16: Validation directions at the left in purple and validation results of the blended
model (17) at the right.

conclude that the most time consuming was the collection of all 1870 samples,
in which generating a sample takes on average 1 minute and 25 seconds of
simulation time. The model reaches a minimal value of 2.5989Nm at U =
(33.246, 266.088, 79.435). If we want to achieve the same result through brute
force evaluation of the simulations, 10,000,000 simulations would be required.

5. Conclusion

This study proposes an industrially applicable approach that guarantees to
reveal the global optimal design of a four-bar mechanism based on CAD motion
simulations and sparse interpolation. The process of sampling the objective-
value TRMS for a combination of design parameters |OA|, |AB| and |BC| is
automated by means of CAD multi-body motion simulations. Subsequently,
the constraints limiting the feasible design space are introduced based on the
position analysis of the four-bar mechanism. This guarantees that all designs
considered by the optimiser can be assembled, and no circuit or branch defect
will occur during the mechanism’s movement.

If the unconstrained design space would be considered by a brute force ap-
proach 10,000,000 objective value samples would be required. As each objective
value sample requires a simulation of approximately 1 minute and 25 seconds
this would be practically impossible and seriously hampering the identification
of the global optimum. However, thanks to the mathematical description of
the design space constraints, introduced in this paper, sparse interpolation can
be applied. The innovative sparse interpolation technique, described and ap-
plied in this paper reduces the number of necessary simulations to only 618.
This allowed to identify the global optimal design. As shown in Table 1, the
method clearly outperforms the best result (local optimum) obtained through
the HEEDS Sherpa heuristic optimizer [39]. The global optimum is 38 % more
efficient than the local optimum. Moreover, the global optimum also reduces the
Tmax by 67 % compared to the original design, which means that the mechanism
can operate with a smaller, and thus cheaper motor.
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Table 1: Saving potential achieved with design optimization.

Design
|OA|
[mm]

|AB|
[mm]

|BC|
[mm]

Trms
[Nm]

Tmax
[Nm]

Trms
savings
[%]

Tmax
savings
[%]

Original 53 65 282 7.91 13.26 - -

Local
optimum

40.6 77.2 263.23 4.19 6.30 47 52.5

Global
optimum

33.246 79.435 266.088 2.60 4.35 67 67
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