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Abstract. Because of the importance of special functions, several books
and a large collection of papers have been devoted to the numerical com-
putation of these functions, the most well-known being the Abramowitz
and Stegun handbook [1]. But up to this date, no environment offers
routines for the provable correct evaluation of these special functions.

We point out how series and limit-periodic continued fraction repre-
sentations of the functions can be helpful in this respect. Our scalable
precision technique is mainly based on the use of sharpened a priori trun-
cation and round-off error upper bounds, in case of real arguments. The
implementation is validated in the sense that it returns a sharp interval
enclosure for the requested function evaluation, at the same cost as the
evaluation.

1 Introduction

Special functions are pervasive in all fields of science and industry. The most
well-known application areas are in physics, engineering, chemistry, computer
science and statistics. Often encountered functions are the Gauss hypergeometric
function 2F1(a, b; c; x), the Bessel functions of integer and half-integer order, the
(complementary) error function to name just a few. Because of their importance,
several books and a large collection of papers have been devoted to algorithms
for the numerical computation of these functions.

Virtually all present-day computer systems, from personal computers to the
largest supercomputers, implement the IEEE floating-point arithmetic standard,
which provides 53 binary or approximately 16 decimal digits accuracy. For most
scientific applications, this is more than sufficient. For instance, in electromag-
netic simulation models the final required accuracy is usually in the order of only
2 to 3 significant digits.

However, for a rapidly expanding body of applications, 64-bit IEEE arith-
metic is no longer sufficient. These range from some exploratory mathematical
investigations to large-scale physical simulations performed on highly parallel
supercomputers. In these applications, portions of the code typically involve nu-
merically sensitive calculations, which produce results of questionable accuracy
using conventional arithmetic. These inaccurate results may in turn induce other
errors, such as taking the wrong path in a conditional branch.
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Such blocks of code benefit enormously from validated numerical techniques,
possibly in combination with high-precision arithmetic. Indeed, a reliable nu-
meric technique delivers a floating-point enclosure for the exact result rather
than a computed estimate.

Up to this date, even environments such as Maple, Mathematica, MATLAB
and libraries such as IMSL, CERN and NAG offer no routines for the provable
correct evaluation of special functions. The following quotes concisely express
the need for new developments in the evaluation of special functions:

– “Algorithms with strict bounds on truncation and rounding errors are not
generally available for special functions. These obstacles provide an oppor-
tunity for creative mathematicians and computer scientists.” Dan Lozier,
general director of the DLMF project, and Frank Olver [2,3].

– “The decisions that go into these algorithm designs — the choice of reduction
formulae and interval, the nature and derivation of the approximations —
involve skills that few have mastered. The algorithms that MATLAB uses for
gamma functions, Bessel functions, error functions, Airy functions, and the
like are based on Fortran codes written 20 or 30 years ago.” Cleve Moler,
founder of MATLAB [4].

2 Validated Function Evaluation

Let us assume to have at our disposal a scalable precision IEEE 754-854 compli-
ant [5] floating-point implementation of the basic operations, comparisons, base
and type conversions, in the rounding modes upward, downward, truncation and
round-to-nearest. Such an implementation is characterized by four parameters:
the internal base β, the precision t and the exponent range [L, U ]. Here we aim at
least at implementations for β = 2 at precisions t ≥ 53, and at implementations
for use with β = 2i or β = 10i where i > 1.

We denote by ⊕, �, ⊗, � the exactly rounded (to the nearest) floating-point
implementation of the basic operations +, −, ×, ÷ in the chosen base β and
precision t. Hence these basic operations are carried out with a relative error of
at most 1/2 β−t+1 which is also called 1/2 ulp in precision t:

∣
∣
∣
∣

(x � y) − (x ∗ y)
x ∗ y

∣
∣
∣
∣
≤ 1

2
β−t+1, ∗ ∈ {+, −, ×, ÷}.

The realization of a machine implementation of a function f(x) in that floating-
point environment is essentially a three-step procedure:

1. For a given argument x, the evaluation f(x) is often reduced to the evaluation
of f for another argument x̃ lying within specified bounds and for which there
exists an easy relationship between f(x) and f(x̃). The issue of argument
reduction is a topic in its own right and mostly applies to only the simplest
transcendental functions [6]. In the sequel we skip the issue of argument
reduction and assume for simplicity that x = x̃.
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2. After determining the argument, a mathematical model F for f is con-
structed and a truncation error

|f(x) − F (x)|
|f(x)| (1)

comes into play, which needs to be bounded. In the sequel we systematically
denote the approximation F (x) ≈ f(x) by a capital italic letter.

3. When implemented, in other words evaluated as F(x), this mathematical
model is also subject to a round-off error

|F (x) − F(x)|
|f(x)| (2)

which needs to be controlled. We systematically denote the implementation
F(x) of F (x) in capital typewriter font.

The technique to provide a mathematical model F (x) of a function f(x) differs
substantially when going from a fixed finite precision context to a finite scalable
precision context. In the former, the aim is to provide one optimal mathemati-
cal model, requiring as few operations as possible. Here optimal means that the
model’s complexity is minimal with respect to the truncation error bound im-
posed by the fixed finite precision. In the latter, the goal is to provide a generic
technique, from which a mathematical model yielding the imposed accuracy,
is deduced at runtime. Hence best approximants are not an option since these
models have to be recomputed every time the precision is altered and a function
evaluation is requested. At the same time the generic technique should generate
an approximant of as low complexity as possible.

We aim, on the one hand, at a generic technique suitable for use in a multi-
precision context, which on the other hand, is efficient enough to compete with
the traditional hardware algorithms when the base β is set to 2 and the precision
t to 53. We also want our implementation to be reliable, meaning that a sharp
interval enclosure for the requested function evaluation is returned without any
additional cost.

Besides series representations, as presented in Section 3, continued fraction
representations of functions can be very helpful in the multiprecision context. A
lot of well-known constants in mathematics, physics and engineering, as well
as elementary and special functions enjoy very nice and rapidly converging
continued fraction representations. In addition, many of these fractions are
limit-periodic. Both, series and continued fraction representations, are classi-
cal techniques to approximate functions and there’s a lot of literature describing
implementations that make use of them [7]. But so far, no attempt is made at
an efficient yet provable correct implementation.

It is well-known that the tail or remainder term of a convergent Taylor series
expansion converges to zero. It is less well-known that the tail of a convergent
continued fraction representation does not necessarily converge to zero. It does
not even need to converge at all. A suitable approximation of the usually dis-
regarded continued fraction tail may speed up the convergence of the continued
fraction approximants. This idea is elaborated in Section 4.
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3 Taylor Series Development

For simplicity, but without loss of generality, we assume that the Taylor series
of f(x) is given at the origin:

f(x) =
∞∑

n=0

anxn. (3)

If we want the total error |f(x)−F(x)|/|f(x)| to be bounded by αβ−t+1 we must
determine N such that for F (x) = pN(x), the partial sum of degree N of (3),
the truncation error ∣

∣
∣
∣

f(x) − pN(x)
f(x)

∣
∣
∣
∣
≤ α

2
β−t+1

and evaluate pN(x), possibly in a working precision s slightly larger than the
user precision t, such that the computed value F(x) = pN(x) satisfies

∣
∣
∣
∣

pN (x) − pN(x)
f(x)

∣
∣
∣
∣
≤ α

2
β−t+1.

An upper bound for the error |f(x) − pN (x)| is obtained from the sequence of
coefficients {an}n. If this sequence is strictly decreasing with all an > 0 and with

rn = an/an−1 ≤ R < 1, n ≥ 1,

then ∞∑

n=N+1

an ≤ aN

∞∑

n=0

Rn =
aN

1 − R
.

If the sequence is alternating with {(−1)nan}n positive and decreasing and if N
is odd, then

∞∑

n=N+1

an ≤ aN+1.

Furthermore in both cases |f(x)| ≥ |pN (x)| and hence
∣
∣
∣
∣

pN (x) − pN(x)
f(x)

∣
∣
∣
∣
≤

∣
∣
∣
∣

pN (x) − pN(x)
pN(x)

∣
∣
∣
∣
.

A standard method for the evaluation of the polynomial pN (x) is Horner’s
scheme, namely

pN (x) = a0 + x(a1 + x(a2 + x(. . . + xaN ))). (4)

Since the coefficients an of pN (x) are often related by a simple ratio rn =
an/an−1, Horner’s scheme can be rewritten as

pN (x) = a0(1 + xr1(1 + xr2(1 + xr3(. . . + xrN )))). (5)
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Let ã0 and r̃n denote the machine representations available for a0 and rn re-
spectively. Let δ(·) denote an upper bound for the relative error (expressed as a
multiple of the working precision 1/2 ulp) due to replacing the expression (·) by
its floating-point counterpart. Hence

ã0 = a0(1 + δ0), |δ0| ≤ 1
2
δ(a0)β−s+1,

r̃n = rn(1 + δn), |δn| ≤ 1
2
δ(rn)β−s+1, n = 1, . . . , N.

A round-off error analysis of the nested scheme

qN (x) = 1,

qn(x) = 1 ⊕ x ⊗ r̃n+1 ⊗ qn+1(x), n = N − 1, . . . , 0,

pN(x) = ã0 ⊗ q0(x)

provides the bound [8, pp. 69]

∣
∣
∣
∣

pN(x) − pN(x)
pN (x)

∣
∣
∣
∣
≤

∣
∣
∣
∣

ε(N)
1 − ε(N)

∣
∣
∣
∣

p+
N(|x|)

|pN(x)| ,

where

p+
N (x) =

N∑

n=0

|an|xn,

ε(N) =
1
2

(

δ(a0) + N

(

3 + δ(x) + max
n=1,...,N

δ(rn)
))

β−s+1.

Note that the factor
p+

N(|x|)
|pN (x)| ≥ 1. (6)

It equals 1 if an ≥ 0 for all n and x ≥ 0, or if (−1)nan ≥ 0 for all n and x ≤ 0.
Otherwise this factor can sometimes be arbitrarily large.

4 Continued Fraction Representation

Let us consider a continued fraction representation of the form

f =
a1

1 +
a2

1 + . . .

=
a1

1
+

a2

1
+ . . . =

∞∑

n=1

an

1
, an := an(x), f := f(x) (7)

with an ≥ -1/4. Here an is called the n-th partial numerator. The continued
fraction is said to be limit-periodic if the limit limn→∞ an exists (it is allowed to
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be +∞). We respectively denote by the N -th approximant fN (x; wN ) and N -th
tail tN (x) of (7), the values

fN (x; wN ) =
N−1∑

n=1

an

1
+

aN

1 + w
,

tN (x) =
∞∑

n=N+1

an

1
.

We restrict ourselves to the case where a sequence {wn}n, wn �= 0 can be chosen
such that limn→∞ fn(x; wn) = limn→∞ fn(x; 0).

The tails tN (x) of a convergent continued fraction can behave quite differently
compared to the tails of a convergent series which always go to zero. We illustrate
the different cases with an example. Take for instance the continued fraction
expansion √

1 + 4x − 1
2

=
∞∑

n=1

x

1
, x ≥ −1

4
.

Each tail tN (x) converges to the value 1/2(
√

1 + 4x − 1) as well and hence the
sequence of tails is a constant sequence. More remarkable is that the even-
numbered tails of the convergent continued fraction

√
2 − 1 =

∞∑

n=1

(

(3 + (−1)n)/2
1

)

=
1
1

+
2
1

+
1
1

+
2
1

+ . . .

converge to
√

2 − 1 while the odd-numbered tails converge to
√

2 (hence the
sequence of tails does not converge), and that the sequence of tails {tN (x)}N =
{N + 1}N of

1 =
∞∑

n=1

n(n + 2)
1

converges to +∞. When carefully monitoring the behaviour of these continued
fraction tails, very accurate approximants fN (x; wN ) for f can be computed by
making an appropriate choice for wN . For instance, when limn→∞ an = a < +∞
then an estimate of the N -th tail is given by (

√
1 + 4a − 1)/2. The appearance

of the square root explains the condition an ≥ -1/4.
The relative truncation error |f(x)− fN (x; wN )|/|f(x)| is bounded by the so-

called interval sequence theorem [9]. Let the sequence of intervals {[Ln, Rn]}n

with -1/2 ≤ Ln ≤ Rn < ∞ be given such that we have for

bn := (1 + sign(Ln)max(|Ln|, |Rn|))Ln−1,

cn := (1 + sign(Ln)min(|Ln|, |Rn|))Rn−1,

that
bn ≤ an ≤ cn, 0 ≤ bncn.
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Then
∣
∣
∣
∣

f(x) − fN (x; wN )
f(x)

∣
∣
∣
∣
≤ RN − LN

1 + LN

N−1∏

n=1

Mn,

LN ≤ wN ≤ RN , Mn = max
{∣

∣
∣
∣

Ln

1 + Ln

∣
∣
∣
∣
,

∣
∣
∣
∣

Rn

1 + Rn

∣
∣
∣
∣

}

.

The Ln and Rn are tails of continued fractions constructed with the entries bn

and cn [9] which actually bound the floating-point uncertainty on an. If the
partial numerators an of the continued fraction (7) satisfy an ≥ -1/4, then we
know that:

– in case all an > 0 and wN ≤ tN , the even approximants satisfy fN (x; wN ) ≤
f(x),

– in case all an < 0 and wN ≤ tN , all approximants satisfy fN (x; wN ) ≤ f(x).

Hence we obtain for the round-off error on the computed value F(x) = fN(x; wN ):
∣
∣
∣
∣

fN (x; wN ) − fN(x; wN )
fN (x; wN )

∣
∣
∣
∣
≤

∣
∣
∣
∣

fN (x; wN ) − fN(x; wN )
fN(x; wN )

∣
∣
∣
∣
.

If the machine representation ãn = an(1 + δn) with |δn| ≤ 1/2 δ(an)β−s+1 then
[10, pp. 156–158] [11]

∣
∣
∣
∣

fN (x; wN ) − fN(x; wN )
fN(x; wN )

∣
∣
∣
∣
≤ 1

2
(4 + Δ)

(

1 + M + . . . + MN−1) β−s+1,

Δ = max
n=1,...,N

δ(an), M = max
n=1,...,N

Mn,

where s ≥ t is the working precision.

5 Example: The Error Function

We consider the error function and the complementary error function

erf(x) =
2√
x

∫ x

0
e−t2dt,

erfc(x) =
2√
x

∫ ∞

x

e−t2dt

for x ∈ R. These functions are closely related to one another through

erfc(x) = 1 − erf(x). (8)

Furthermore, we can limit the discussion to x > 0 since

erf(0) = 0,

erf(−x) = −erf(x),
erfc(−x) = 2 − erfc(x).
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5.1 Series Implementation 0 < x ≤ 1

The Maclaurin series of erf(x) is defined by

erf(x)
2/

√
π

=
∞∑

n=0

(−1)nx2n+1

(2n + 1)n!
. (9)

Its coefficients are related by the ratio

rn = − 2n − 1
n(2n + 1)

,

which can be computed using one floating-point division, if we assume that N
is such that N(2N + 1) remains exactly representable in the base β precision
s floating-point system in use. Then maxn=1,...,N δ(rn) = 1. A sufficient lower
bound for erf(x) is given by

e(x) = x − x3

3
for which erf(x)/e(x) ≤ 1.121. The factor (6) is bounded by 2. To compute the
series using (5) we replace x by x2 and a0 by x, with δ(x2) = 1 and δ(a0) = 0
given that x is a floating-point number.

In Table 1 we display the evaluation of erf(x) in a scalable precision floating-
point system with β = 2 and t = 125 for a number of x-values. We also list the
degree N of the partial sum and the working precision s.

Table 1.

x erf(x) N s

0.125 0.14031620480 . . . 15 139

0.250 0.27632639016 . . . 19 139

0.375 0.40411690943 . . . 21 139

0.500 0.52049987781 . . . 25 139

0.625 0.62324088218 . . . 27 140

0.750 0.71115563365 . . . 29 140

0.875 0.78407506105 . . . 31 140

1.000 0.84270079294 . . . 35 140

5.2 Continued Fraction Implementation on 1 < x

Using (8) in combination with

erfc(x) =
e−x2

√
π

⎛

⎝
2x/(2x2 + 1)

1
+

∞∑

n=2

−(2n−3)(2n−2)
(2x2+4n−7)(2x2+4n−3)

1

⎞

⎠
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the values in Table 2 are obtained. Again β = 2, t = 125 and the approximant
number N and the working precision s are listed.

Here for n ≥ 2 all an < 0 with

δ(an) = 7, M = 0.85.

We can safely put that the integers 4N − 3 and (2N − 3)(2N − 2) can be rep-
resented exactly and that δ(x2) = 1 since δ(x) = 0. For the additional factors
exp(−x2)/

√
π in combination with 2x/(2x2+1) a separate error analysis is made.

Table 2.

x erfc(x) N s

1.750 1.3328328780 . . . e−2 77 143

2.500 4.0695201744 . . . e−4 41 142

3.250 4.3027794636 . . . e−6 27 143

4.000 1.5417257900 . . . e−8 20 142

4.750 1.8485047721 . . . e−11 16 142

5.500 7.3578479179 . . . e−15 14 143

6.250 9.6722041318 . . . e−19 12 142

7.000 4.1838256077 . . . e−23 11 144

6 Special Function Support

In Table 3 we indicate which functions and which argument ranges (on the
real line) are covered by our implementation. For the definition of the special
functions we refer to [10].

Table 3.

special function series continued fraction

γ(a, x) a > 0, x �= 01

Γ (a, x) a ∈ R, x ≥ 0

erf(x) |x| ≤ 1 identity via erfc(x)

erfc(x) identity via erf(x) |x| > 1

dawson(x) |x| ≤ 1 |x| > 1

1 For a > 0, a > x a faster implementation making use of series is under development.
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Table 3. (continued)

special function series continued fraction

Fresnel S(x) x ∈ R
2

Fresnel C(x) x ∈ R
2

En(x), n > 0 n ∈ N, x > 03

2F1(a, n; c; x) a ∈ R, n ∈ Z,

c ∈ R \ Z
−
0 , x < 1

1F1(n; c; x) n ∈ Z,

c ∈ R \ Z
−
0 , x ∈ R

In(x) n = 0, x ∈ R n ∈ N, x ∈ R

Jn(x) n = 0, x ∈ R n ∈ N, x ∈ R

In+1/2(x) n = 0, x ∈ R n ∈ N, x ∈ R

Jn+1/2(x) n = 0, x ∈ R n ∈ N, x ∈ R

A similar implementation in the complex plane is the subject of future re-
search.
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